inlaber.ru

Роль внешнего давления в процессах испарения и конденсации. Испарение Переохлажденный пар и перегретая жидкость

Процесс интенсивного испарения жидкости начинается при температуре, когда упругость пара жидкости превысит внешнее давление газовой атмосферы над жидкостью. При температуре кипения образование пара идет во всей массе жидкости и течет практически при постоянной температуре до полного перехода жидкости (однокомпонентной) и пар. Искусственно понижая давление, можно заставить жидкость кипеть при более низких температурах, чем широко пользуются в технике, так как для работы при низких температурах легче найти подходящий материал для аппаратуры. Современная вакуумная техника имеет в своем распоряжении мощные ротационные насосы, способные создать вакуум, при котором остаточное давление не превышает 0,001 мм рт ст., и струйные диффузионные насосы, создающие вакуум до 10в-7-10в-8 MM рт. ст.
Перегонку в вакууме применяют для получения металлов высокой чистоты; Zn, Cd, Mg, Ca и др. Обычно работают при давлениях, немного превышающих упругость пара перегоняемого металла в точке его плавления. Тогда перегоняя жидкий металл, получают твердый конденсат, что позволяет применить очень простую конструкцию прибора для дистилляции, изображенную на рис. 24. Прибор представляет собою цилиндр, в нижней части которого находится сосуд с жидким перегоняемым металлом. Пары конденсируются в верхней части цилиндра на специальном составном металлическом цилиндре (конденсаторе) в виде кристаллической корки, которую после окончания процесса извлекают вместе с конденсатором. Перед нагревом металла сначала вакуумным насосом откачивают воздух из прибора, а затем время от времени восстанавливают вакуум, изменяющийся вследствие натекания извне воздуха через неплотности аппаратуры. Если прибор достаточно герметичен, то в процессе перегонки, поскольку при этом не выделяются неконденсирующиеся газы, постоянная работа вакуум-насоса не нужна.

Описанный прибор крайне прост, его изготовляют из стали пли жаростойких металлических сплавов. Что особенно важно, его крышка и все уплотняющие - герметизирующие детали охлаждаются водой, т. е. работают при комнатной температуре, допускающей применение весьма совершенных уплотнителей - резины, вакуумных замазок и т. д. Применение вакуума позволяет очищать перегонкой при сравнительно низких температурах (700-900°) такие химически активные и весьма агрессивные металлы, как кальций, магний, барий, перегонка которых при атмосферном давлении неосуществима из-за невозможности подбора материал для аппаратуры.
Рассмотрим особенности процесса испарения в вакууме.
Диаграмма состояния жидкость - пар с понижением давления имеют тот же характер, что и диаграммы для атмосферного давления, только линии жидкости и пара перемещаются в область более низких температур. Отсюда следует, что эффективность разделения компонентов при испарении их раствора в вакууме примерно такая же, как и при атмосферном давлении, но осуществляется при более низких температурах; температура тем ниже, чем глубже применяемый вакуум. Особенность работы в вакууме является отсутствие уноса мелких капель жидкости вместе с парами, всегда наблюдающееся при работе под атмосферным давлением. При бурном кипении жидкости лопающиеся пузырьки поднимающегося из глубины жидкости пара дают брызги, которые уносятся па рами в конденсатор и загрязняют дистиллят. В вакууме (достаточно глубоком) образования брызг не происходит, так как процесс кипения коренным образом отличается от кипения при атмосферном давлении. В вакууме образование пара идет только на поверхности жидкости, пузырьки внутри жидкости не образуются, поверхность спокойна, не бурлит, следовательно, нe могут возникнуть брызги. Поэтому вакуумная дистилляция дает более чистый дистиллят, чем дистилляция при атмосферном давлении.
Покажем на примере особенность процесса кипения в вакууме. Пусть в одном случае вода в сосуде с глубиной слоя 250 мм кипит при- атмосферном давлении (760 мм рт. ст.). Тогда пар, выделяющийся с поверхности воды, для преодоления внешнего давления должен иметь атмосферное давление (760 мм рт. ст.), которое развивается при температуре поверхности воды 100°. Пузырек пара, образующийся на дне сосуда, должен иметь большее давление, так как, кроме давления атмосферы, ему нужно преодолеть гидростатическое давление столба воды высотой 250 мм, что соответствует избытку давления в 18 мм рт. ст. Таким образом, пар, выделяющийся со дна сосуда, должен иметь давление 760 + 18 = 778 мм рт. ст.. чему соответствует температура воды на дне сосуда 100,6°. Такой небольшой перегрев воды на дне (0,6°) вполне реален, и процесс кипения идет так, что пар образуется во всей массе слоя. Вода энергично кипит.и образует брызги при разрушении пузырьков на поверхности.
Теперь рассмотрим кипение того же слоя воды в вакууме 4,58 мм рт. ст. Для кипения поверхностный слой воды должен иметь температуру 0°, при которой упругость насыщенного пара равна 4,58 мм рт. ст. Пузырек, образующийся на дне, должен преодолеть гидростатическое давление столба воды в 250 мм, что соответствует давлению 18 мм рт. ст., и иметь общее давление 4,58 + 18 = 22,58 мм рт. ст. Такое давление насыщенного пара вода будет иметь при температуре ~ 23°, т. е. чтобы пузырек пара мог образоваться на дне сосуда, необходимо иметь у дна температуру 23°. Такой разницы между температурами у дна и на поверхности получить невозможно, так как этому воспрепятствуют конвекционные токи. Следовательно, пузырьки в глубине слоя жидкости образовываться не будут и парообразование будет осуществляться только с поверхности жидкости.
Металлические расплавы имеют высокую теплопроводность, препятствующую местному перегреву жидкости, а следовательно, и кипению с образованием пузырьков.
Пока давление в приборе не станет очень малым, между поверхностью жидкости и паром идет обмен молекулами и устанавливается подвижное равновесие жидкость - пар. К конденсатору течет обычный газовый поток пара и результаты процесса перегонки определяются диаграммой состояния жидкость - пар.
Если давление в приборе настолько мало, что длина свободного пробега молекул становится больше размеров прибора, характер процесса перегонки коренным образом изменяется.
В этих условиях никакого обмена молекулами между парами и жидкостью нет, подвижное равновесие жидкость - пар не устанавливается и диаграмма состояния жидкость - пар процесс испарения не описывает. Обычной газовой струп между испарителем и конденсатором. He образуется, отделившиеся от поверхности жидкости молекулы пара следуют по прямолинейному пути, без столкновения с другими молекулами, попадают на холодную поверхность конденсатора и там остаются - конденсируются; процесс испарения полностью не обратим и имеет характер молекулярного испарения. Результат дистилляции определяется скоростью испарения, зависящей от рода испаряемого вещества и температуры и независящей от внешнего давления в системе, если это давление достаточно мало. Скорость испарения в этих условиях может быть рассчитана по формуле Ленгмюра:

Приняв за скорость испарения массу вещества, испаряющегося в секунду с единицы поверхности, выразив упругость пара р в миллиметрах ртутного столба и заменив величины R и π их численными значениями, получим уравнение (III, 13) в иной форме, удобной для практических расчетов:

При молекулярном испарении могут быть разделены вещества с одинаковой упругостью пара, если их молекулярные веса различны, что доказано опытами по разделению изотопов.

17.10.2019

В российском сегменте бизнес Hoffmann-group процветает. Партнерам группы компаний удается год от года увеличивать в РФ объемы реализации....

17.10.2019

Пластмасса является практичным и дешёвым материалом. Этим обуславливается её широкое применение в производстве вещей. Однако и у неё имеются недостатки....

17.10.2019

Нержавеющий металл широко применяется в различных сферах промышленности и строительства. Металлопрокат и изделия из него используют предприятия судостроения и...

17.10.2019

Вязальная проволока представляет собой строительный материал в виде тонкой нити, для изготовления которого применяется раскатную низкоуглеродистую сталь, подвергающуюся...

17.10.2019

Изготавливают пробковые панели из натурального материала. Для этого используется кора дуба (пробковый дуб произрастает на севере Африки и в некоторых районах южной...

17.10.2019

Хозяйственная деятельность человека зачастую усиливает процесс естественной эрозии почвы. Постепенно меняется рельеф, создаются каналы, меняют направление реки, кюветы...

17.10.2019

Функции этикеток могут быть разными. После наклейки на товар они становятся источником данных о производителе и продукции, используются как средство продвижения и...

Для регулирования давления испарения служит регулятор КVP, устанавливаемый на магист­рали всасывания ниже по потоку от испарителя (рис. 6.13).

Кроме основной своей функции регулятор давления испаре­ния обеспечивает защиту в случае сильного падения давления испарения во избежание замерзания охлаждаемой воды в теплообменном тракте испарителей установок для охлаждения воды.

Регулятор работает следую­щим образом: при увеличении давления выше давления на­стройки регулятор открывается, а при падении давления ниже заданного значения он закрыва­ется. Управляющим сигналом служит только давление на вхо­де в регулятор.

В установках, имеющих в сво­ем составе несколько испарите­лей и работающих при различ­ных давлениях испарения, регу­лятор устанавливают за испари­телем, давление в котором наи­более высокое. Во избежание конденсации хладагента во вре­мя остановок на всасывающей магистрали сразу за испарителем с минимальным давлением мон­тируют обратный клапан. В уста­новках с параллельно расположенными испарителями и общим компрессором регулятор устанавливают на всасывающей магист­рали, чтобы поддерживать в испарителях одинаковое давление.

Кроме данного типа регулятора давление испарения стабили­зируют с помощью электронных систем регулирования одной или нескольких холодильных камер, шкафов и т.д., обеспечивающих высокую точность поддержания заданной температуры (±0,5 К) в широком диапазоне холодопроизводительности - от 10 до 100 % номинального значения.

8. Регуляторы производительности.

Регуляторы производительно­сти (рис. 6.14) способствуют адаптации холодопроизводительнос­ти компрессора к изменению тепловой нагрузки на испаритель в установках с очень малой заправкой хладагентом. Они позволяют избежать понижения давления всасывания и бесполезных запус­ков.

При уменьшении тепловой нагрузки на испаритель давление всасывания падает, вызывая разрежение в контуре, что приводит к появлению опасности проникновения влаги в установку. При падении давления всасывания ниже заданной величины настрой­ки открывается регулятор, в результате чего определенный объем горячих газов из нагнетательного патрубка проходит во всасываю­щий патрубок. В результате давление всасывания повышается, а холодопроизводительность понижается. Регулятор реагирует толь­ко на давление во всасывающей магистрали, т.е. на выходе из него.

9. Пусковые регуляторы.

Пусковые регуляторы позволяют избе­жать работы и запуска компрессора при слишком высоких значе­ниях давления всасывания, что возникает после длительной оста­новки машины или после оттаивания испарителя.

Пусковой регулятор KVL относится к типу дрос­сельных регуляторов давления «после себя». Он поддерживает по­стоянным давление во всасывающем трубопроводе между регуля­тором и компрессором и разгружает компрессор при пуске.

Давление на входе в регулятор действует на сильфон снизу и на пластину клапана сверху. Поскольку эффективная площадь сильфона эквивалентна площади проходного сечения, давление на вхо­де нейтрализуется. На пластину клапана снизу действует давление на выходе (в картере), противодействуя силе натяжения регулиру­емой пружины. Эти две силы являются действующими силами ре­гулятора. При понижении регулируемого давления на выходе (в кар­тере) клапан открывается, пропуская пары хладагента в компрессор. Для холодильных установок большой производительности возмо­жен параллельный монтаж пусковых регуляторов KVL. При этом регуляторы подбирают из условия одинакового падения давления в каждом трубопроводе и эквивалентной производительности.

Регулятор настраивают на максимальные значения, не превы­шая, однако, рекомендованных заводом-изготовителем значений для компрессора или компрессорно-конденсаторного агрегата. На­стройку выполняют по показаниям манометра на всасывающей линии компрессора.

Регулятор пуска устанавливают на всасывающей линии между испарителем и компрессором (рис. 6.15).

В данном регуляторе предусмотрена возможность подсоедине­ния линии отбора паров через манометрический отвод на вход­ном патрубке, имеющем проходной диаметр 1/4". При этом спо­собе регулирования отбор паров осуществляется «после себя».

Выбор пускового регулятора определяется пятью основными показателями:

Видом хладагента,

Производительностью системы,

Проектным давлением всасывания,

Максимальным расчетным дав­лением,

Падением давления в регуляторе.

Разность между проектным и максимальным расчетным давле­нием всасывания определяет длительность открытия клапана. Па­дение давления в регуляторе - важный фактор, так как потери давления во всасывающей линии сказываются на производитель­ности машины. Следовательно, падение давления в регуляторе должно поддерживаться на минимальном уровне. Обычно в низ­котемпературных холодильных системах падение давления состав­ляет 3... 7 кПа. Максимальное падение давления для большинства холодильных систем равно 14 кПа.

При максимальном открытии вентиля регулятор, с одной сто­роны, обеспечивает максимальную производительность, а с дру­гой - вызывает большие потери давления, что снижает произво­дительность системы. Поэтому падение давления в регуляторе долж­но поддерживаться на минимальном уровне.

Вы когда-нибудь оставляли бутылку воды на несколько часов под палящим солнцем и слышали «шипящий» звук, открывая ее? Этот звук вызван давлением пара. В химии давление пара – это давление, оказываемое парами жидкости, которая испаряется в герметично закрытом сосуде. Чтобы найти давление пара при данной температуре, воспользуйтесь уравнением Клапейрона-Клаузиуса: .

Шаги

Используя уравнение Клапейрона-Клаузиуса

    Запишите уравнение Клапейрона-Клаузиуса, которое используется для расчета давления пара при его изменении с течением времени. Эту формулу можно использовать в большинстве физических и химических задач. Уравнение выглядит следующим образом: ln(P1/P2) = (ΔH vap /R)((1/T2) - (1/T1)) , где:

    Подставьте в уравнение Клапейрона-Клаузиуса данные вам значения величин. В большинстве задач даются два значения температуры и значение давления или два значения давления и значение температуры.

    • Например, в сосуде находится жидкость при температуре 295 К, а давление ее паров равно 1 атмосфере (1 атм). Найдите давление паров при температуре 393 K. Здесь вам даны два значения температуры и значение давления, поэтому вы можете найти другое значение давления при помощи уравнения Клапейрона-Клаузиуса. Подставив данные вам значения в формулу, вы получите: ln(1/P2) = (ΔH vap /R)((1/393) - (1/295)) .
    • Обратите внимание, что в уравнении Клапейрона-Клаузиуса температура всегда измеряется в кельвинах, а давление в любых единицах измерения (но они должны быть одинаковыми для Р1 и Р2).
  1. Подставьте константы. Уравнение Клапейрона-Клаузиуса содержит две константы: R и ΔH vap . R всегда равна 8,314 Дж/(К×моль). Значение ΔH vap (энтальпия испарения) зависит от вещества, давление паров которого вы пытаетесь найти; эту константу, как правило, можно найти в таблице в учебниках по химии или на сайтах (например, ).

    • В нашем примере допустим, что в сосуде находится вода. ΔH vap воды равна 40,65 кДж/моль или равна 40650 Дж/моль.
    • Подставьте константы в формулу и получите: ln(1/P2) = (40650/8314)((1/393) - (1/295)).
  2. Решите уравнение при помощи алгебраических операций.

    • В нашем примере неизвестная переменная находится под знаком натурального логарифма (ln). Для избавления от натурального логарифма превратите обе стороны уравнения в степень математической константы «е». Другими словами, ln(x) = 2 → e ln(x) = e 2 → x = e 2 .
    • Теперь решите уравнение:
    • ln(1/P2) = (40650/8,314)((1/393) - (1/295))
    • ln(1/P2) = (4889,34)(-0,00084)
    • (1/P2) = e (-4,107)
    • 1/P2 = 0,0165
    • P2 = 0.0165 -1 = 60,76 атм. Это имеет смысл, так как повышение температуры в герметично закрытом сосуде на 100 градусов приведет к увеличению парообразования, что значительно увеличит давление пара.

    Вычисление давления пара в растворах

    1. Запишите закон Рауля. В реальной жизни чистые жидкости встречаются редко; зачастую мы имеем дело с растворами. Раствор получается при добавлении небольшого количества определенного химического вещества, называемого «растворенное вещество», в большее количество другого химического вещества, называемого «растворитель». В случаях растворов пользуйтесь законом Рауля: , где:

      • P раствор – давление паров раствора.
      • P растворитель – давление паров растворителя.
      • X растворитель – мольная доля растворителя.
      • Если вы не знаете, что такое «мольная доля», читайте дальше.
    2. Определите, какое вещество будет растворителем, а какое – растворенным веществом. Напомним, что растворенное вещество – это вещество, растворяемое в растворителе, а растворитель – это вещество, растворяющее растворенное вещество.

      Найдите температуру раствора, так как она будет влиять на давление его пара. Чем выше температура, тем выше давление паров, так как с ростом температуры растет парообразование.

      • В нашем примере допустим, что температура сиропа равна 298 K (около 25˚С).
    3. Найдите давление паров растворителя. В справочниках по химии приводятся значения давления паров многих распространенных химических веществ, но, как правило, такие значения даны при температуре веществ в 25°С/298 К или при их температурах кипения. Если в задаче вам даны такие температуры, используйте значения из справочников; в противном случае вам необходимо вычислить давление паров при данной температуре вещества.

      Найдите мольную долю растворителя. Для этого найдите отношение числа молей вещества к общему числу молей всех веществ, имеющихся в растворе. Другими словами, мольная доля каждого вещества равна (число молей вещества)/(общее число молей всех веществ).

    4. Теперь подставьте данные и найденные значения величин в уравнение Рауля, приведенное в начале этого раздела (P раствор = P растворитель X растворитель ).

      • В нашем примере:
      • P раствор = (23,8 мм рт. ст.)(0,947)
      • P раствор = 22,54 мм рт. ст. Это имеет смысл, так как в большом количестве воды растворено небольшое количество сахара (если измерять в молях; в литрах их количество одинаково), поэтому давление паров незначительно уменьшится.

    Вычисление давления пара в особых случаях

    1. Определение стандартных условий. Зачастую в химии используются значения температуры и давления как своего рода значения «по умолчанию». Такие значения называются стандартными температурой и давлением (или стандартными условиями). В задачах на давление пара часто упоминаются стандартные условия, поэтому лучше запомнить стандартные значения:

      • Температура: 273,15 K/0˚C/32 F
      • Давление: 760 мм рт.ст./1 атм./101,325 кПа
    2. Перепишите уравнение Клапейрона-Клаузиуса так, чтобы найти другие переменные. В первом разделе этой статьи было показано, как вычислять давления паров чистых веществ. Однако не во всех задачах требуется найти давление P1 или P2; во многих задачах нужно вычислить температуру или значение ΔH vap . В таких случаях перепишите уравнение Клапейрона-Клаузиуса, обособив неизвестную величину на одной стороне уравнения.

      • Например, дана неизвестная жидкость, давление пара которой равно 25 торр при 273 К и 150 Торр при 325 К. Нужно найти энтальпию испарения этой жидкости (то есть ΔH vap). Решение этой задачи:
      • ln(P1/P2) = (ΔH vap /R)((1/T2) - (1/T1))
      • (ln(P1/P2))/((1/T2) - (1/T1)) = (ΔH vap /R)
      • R × (ln(P1/P2))/((1/T2) - (1/T1)) = ΔH vap Теперь подставьте данные вам значения:
      • 8,314 Дж/(K × моль) × (-1,79)/(-0,00059) = ΔH vap
      • 8,314 Дж/(K × моль) × 3033,90 = ΔH vap = 25223,83 Дж/моль
    3. Учтите давления пара растворенного вещества. В нашем примере из второго раздела этой статьи растворенное вещество – сахар – не испаряется, но если растворенное вещество производит пар (испаряется), давление такого пара следует учесть. Для этого воспользуйтесь модифицированным видом уравнения Рауля: P раствор = Σ(P вещество X вещество), где символ Σ (сигма) означает, что необходимо сложить значения давлений паров всех веществ, из которых состоит раствор.

      • Например, рассмотрим раствор, состоящий из двух химических веществ: бензола и толуола. Общий объем раствора 120 миллилитров (мл); 60 мл бензола и 60 мл толуола. Температура раствора равна 25°С, а давление паров при 25°С равно 95,1 мм рт.ст. для бензола и 28,4 мм рт.ст. для толуола. Необходимо вычислить давление паров раствора. Мы можем сделать это при помощи плотностей веществ, их молекулярных масс и значений давления паров:
      • Масса (бензол): 60 мл = 0,06 л × 876,50 кг/1000 л = 0,053 кг = 53 г
      • Масса (толуол): 0,06 л × 866,90 кг/1000 л = 0,052 кг = 52 г
      • Моль (бензол): 53 г × 1 моль/78,11 г = 0,679 моль
      • Моль (толуол): 52 г × 1 моль/92,14 г = 0,564 моль
      • Общее число молей: 0,679 + 0,564 = 1,243
      • Мольная доля (бензол): 0,679/1,243 = 0,546
      • Мольная доля (толуол): 0,564/1,243 = 0,454
      • Решение: P раствор = P бензол X бензол + P толуол X толуол
      • P раствор = (95,1 мм рт. ст.)(0,546) + (28,4 мм рт. ст.)(0,454)
      • P раствор = 51,92 мм рт. ст. + 12,89 мм рт. ст. = 64,81 мм рт. ст.
    • Для использования уравнения Клапейрона Клаузиуса температура должна быть указана в градусах Кельвина (обозначается К). Если у вас дана температура по Цельсию, необходимо конвертировать ее при помощи следующей формулы: T k = 273 + T c
    • Описанный выше метод работает, потому что энергия прямо пропорциональна количеству тепла. Температура жидкости является единственным фактором окружающей среды, от которой зависит давление паров.

ГОРЕНИЕ ЖИДКОСТЕЙ

Горение жидкостей характеризуется двумя взаимо­связанными явлениями – испарением и сгоранием паро­воздушной смеси над поверхностью жидкости. Следовательно, горение жидкостей сопровождается не только химической реакцией (окисление, переходящее в пламенное горение), но и физическими явлениями (испарение и образование над поверхностью жидкости паро-воздушной смеси), без которых горение невозможно.

Переход вещества из жидкого состояния в парообразное называется парообразованием. Различают две формы этого процесса: испарение и ки­пение. Испарение – это переход жидкости в пар со свободной поверхности при температуре ниже точки кипения жид­кости (см. рис. 4.1). Испарение происходит в результате теплового движения молекул жидкости. Скорость движения моле­кул колеблется в широких пределах, сильно отклоняясь в обе стороны от ее среднего значения. Часть молекул, имеющих достаточно большую кинетическую энергию, вырывается из поверхностного слоя жидкости в газовую (воздушную) среду. Избыточная энергия теряемых жид­костью молекул затрачивается на преодоление сил взаи­модействия между молекулами и работу расширения (увеличения объема) при переходе жидкости в пар. Кипение – это испарение не только с поверхности, но и из объема жидкости путем образования пузырьков пара во всем объеме и выделения их. Испарение наблюдается при любой температуре жидкости. Кипение происходит только при температуре, при которой давление насыщенного пара достигнет величины внешнего (атмосферного) давления.

За счет броуновского движения в газовой зоне имеет место и обратный процесс – конденсация . Если объем над жидкостью замкнутый, то при любой температуре жидкости устанавливается динамическое равновесие между процессами ис­парения и конденсации.

Пар, находящийся в равновесии с жидкостью, называется насыщенным паром. Состоянию равновесия соответствует определенная для данной температуры концентрация пара. Давление пара, находящегося в равновесии с жидкостью, называется давлением насыщенного пара.

Рис. 4.1. Схема испарения жидкости в: а) открытом сосуде, б) закрытом сосуде

Давление насыщенного пара (р н.п.) данной жидкости при неизменной температуре является величиной постоянной и неизменной для нее. Величина давления насыщенного пара определяется температурой жидкости: с ростом температуры давление насыщенного пара увеличива­ется. Это обусловлено ростом кинетической энергии молекул жидкости с повышением температуры. При этом все большая доля молекул оказыва­ется обладающей энергией, достаточной для перехода в пар.

Таким образом, над поверхностью (зеркалом) жидкости всег­да существует паровоздушная смесь, которая в состоянии равно­весия характеризуется давлением насыщенных паров жидкости или их концентрацией. С ростом температуры давление насыщен­ных паров возрастает согласно уравнению Клайперона-Клазиуса:


, (4.1)

или в интегральной форме:

, (4.2)

где р н.п. – давление насыщенного пара, Па;

DН исп – теплота испарения, то количество тепла, которое необходимо для перевода в парообразное состояние единицы массы жидкости, кДж/моль;

Т – температура жидкости, К.

Концентрация насыщенного пара Снад поверхностью жидкости связана с его давлением соотношением:

. (4.3)

Из (4.1 и 4.2) следует, что с увеличением температуры жидкости давление насыщенных паров (или их концентрация) возрастают экспоненциально. В связи с этим при некоторой температуре над по­верхностью жидкости создается концентрация паров, равная нижнему концентрационному пределу распространения пламени. Эта температура называется нижним температурным пределом распространения пламени (НТРП).

Поэтому для любой жидкости всегда существует такой интервал температур, при котором кон­центрация насыщенных паров над зеркалом будет находиться в области воспламенения, т. е. HKПРП £ j п £ ВКПРП.

>>Физика: Зависимость давления насыщенного пара от температуры. Кипение

Жидкость не только испаряется. При некоторой температуре она кипит.
Зависимость давления насыщенного пара от температуры . Состояние насыщенного пара, как показывает опыт (мы говорили об этом в предыдущем параграфе), приближенно описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.
Однако зависимость р н.п. от Т , найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис.11.1 , участок кривой АВ ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара . В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.
Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис.11.1 , участок кривой ВС ).
. По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?
В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь.
Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.
Обратим внимание на то, что испарение жидкости происходит при температурах, меньших температуры кипения, и только с поверхности жидкости, при кипении образование пара происходит по всему объему жидкости.
Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.
Чем больше внешнее давление, тем выше температура кипения . Так, в паровом котле при давлении, достигающем 1,6 10 6 Па, вода не кипит и при температуре 200°С. В медицинских учреждениях в герметически закрытых сосудах - автоклавах (рис.11.2 ) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100°С. Автоклавы применяют для стерилизации хирургических инструментов и др.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения . Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре (рис.11.3 ). При подъеме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближенно равно 4 10 4 Па (300 мм рт. ст.). Вода кипит там примерно при 70°С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости, так как при меньших температурах давление насыщенного пара становится равным атмосферному . Например, при температуре кипения 100°С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути - всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при температуре 357°С при нормальном давлении.
Жидкость закипает, когда давление ее насыщенного пара становится равно давлению внутри жидкости.

???
1. Почему температура кипения возрастает с увеличением давления?
2. Почему для кипения существенно повышение давления насыщенного пара в пузырьках, а не повышение давления имеющегося в них воздуха ?
3. Как заставить закипеть жидкость, охлаждая сосуд? (Вопрос этот непростой.)

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Загрузка...