inlaber.ru

Что такое ток а. Постоянный электрический ток

Подключим к пальчиковой батарейке светодиод, и если полярность окажется соблюдена правильно, то он засветится. В каком направлении установится ток? В наше время всем известно, что от плюса к минусу. А внутри батарейки, стало быть, от минуса к плюсу - ток ведь в этой замкнутой электрической цепи постоянный.

За направление тока в цепи принято считать направление движения положительно заряженных частиц, но ведь в металлах то движутся электроны, а они, мы знаем, заряжены отрицательно. Значит в реальности понятие «направление тока» - это условность. Давайте разберемся, почему в то время как электроны текут по цепи от минуса к плюсу, все вокруг говорят, что ток идет от плюса к минусу . Для чего такая несуразность?


Ответ кроется в истории становления электротехники. Когда Франклин разрабатывал свою теорию электричества, он рассматривал его движение подобно движению жидкости, которая как-бы перетекает от одного тела к другому. Где электрической жидкости больше - оттуда она течет в ту сторону, где ее меньше.

Франклин поэтому и назвал тела с избытком электрической жидкости (условно!) положительно электризованными, а тела с недостатком электрической жидкости - отрицательно электризованными. Отсюда и пошло представление о движении . Положительный заряд перетекает, словно через систему сообщающихся сосудов, от одного заряженного тела к другому.

Позже французский исследователь Шарль Дюфе в своих экспериментах с установил, что заряжаются не только натираемые тела, но и натирающие, причем при контакте заряды обеих тел нейтрализуется. Получалось, что есть на самом деле два отдельных вида электрического заряда, которые при взаимодействии друг друга нейтрализуют. Эту теорию двух электричеств развил современник Франклина Роберт Симмер, который на себе убедился в том, что в теории Франклина что-то не до конца правильно.

Шотландский физик Роберт Симмер носил по две пары чулок: утепленные шерстяные и сверху еще вторые шелковые. Когда он снимал с ноги оба чулка сразу, а затем выдергивал один чулок из другого, то наблюдал такую картину: шерстяной и шелковый чулки раздуваются, принимая как бы форму его ноги и резко слипаются друг с другом. При этом чулки из одинакового материла, как шерстяные и шелковые, отталкивались друг от друга.

Если же Симмер держал в одной руке два шелковых, а в другой - два шерстяных чулка, то когда он сближал руки, отталкивание чулков из одинакового материала и притяжение чулков из разного материала приводило к интересному взаимодействию между ними: разнородные чулки словно набрасывались друг на друга и сплетались в клубок.

Наблюдения за поведением собственных чулков привели Роберта Симмера к выводу, что в каждом теле имеется не одна, а две электрические жидкости – положительная и отрицательная, которые содержатся в теле в одинаковых количествах. При натирании двух тел какая-то из них может перейти из одного тела в другое, тогда в одном теле окажется избыток одной из жидкостей, а в другом – ее недостаток. Оба тела станут наэлектризованными противоположными по знаку электричествами.

Тем не менее, электростатические явления успешно можно было объяснить как при помощи гипотезы Франклина, так и при помощи гипотезы двух электричеств Симмера. Эти теории некоторое время конкурировали между собой. Когда же в 1779 году Алессандро Вольта создал свой вольтов столб, после чего был исследован электролиз, ученые пришли к однозначному выводу, что действительно в растворах и жидкостях движутся два противоположных потока носителей заряда - положительные и отрицательные. Дуалистическая теория электрического тока, хотя и не была понятна всем, все же восторжествовала.

Наконец, в 1820 году, выступая перед Парижской академией наук, Ампер предлагает выбрать в качестве основного направления тока одно из направлений движения заряда. Ему было удобно сделать так, поскольку Ампер исследовал взаимодействия токов между собой и токов с магнитами. И чтобы каждый раз во время сообщения не упоминать, что в двух направлениях по одному проводнику движутся два потока противоположного заряда.

Ампер предложил просто принять за направление тока направление движения положительного электричества, и все время говорить о направлении тока, имея ввиду движение положительного заряда . С тех пор предложенное Ампером положение о направлении тока принято повсеместно, и используется до сих пор.


Когда Максвелл разрабатывал свою теорию электромагнетизма, и решил применять правило правого винта для удобства определения направления вектора магнитной индукции, он также придерживался этого положения: направление тока - это направление движения положительного заряда.

Фарадей в свою очередь отмечал, что направление тока условно, это просто удобное средство для ученых, чтобы однозначно определять направление тока. Ленц, вводя свое Правило Ленца (смотрите - ), также оперировал термином «направление тока», имея ввиду движение положительного электричества. Это просто удобно.

И даже после того как Томсон в 1897 году открыл электрон, условность направления тока все равно сохранилась. Даже если в проводнике или в вакууме реально движутся только электроны, все равно за направление тока принимается противоположное направление - от плюса к минусу.


Спустя уже более века с момента открытия электрона, несмотря на представления еще Фарадея об ионах, даже с появлением электронных ламп и транзисторов, хотя и появились трудности в описаниях, все равно привычное положение дел сохраняется. Так просто удобнее оперировать с токами, ориентироваться в их магнитных полях, и никаких реальных трудностей это, похоже, ни у кого не вызывает.

В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК . Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

— это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10 -31 кг . Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома , и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов :

1. Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА «, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

где I – сила тока, U R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению .

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА «. Так же изобразим его в виде формулы:

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение .

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10 -9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током : работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Электрический ток

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток - это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон - «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором - «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока - это когда один конец провода соединен с наэлектризованным телом, а другой - с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц - электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение - это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд - в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника - L, площадь поперечного сечения - S. В этом случае можно сопротивление записать в виде формулы:

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал

р, Ом х м2/м

Материал

р, Ом х м2/м

Платино-иридиевый сплав

Металл или сплав

Манганин (сплав)

Алюминий

Константан (сплав)

Вольфрам

Нихром (сплав)

Никелин (сплав)

Фехраль (сплав)

Хромель (сплав)

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое - сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников - не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Яндекс.ДиректВсе объявления Квартиры посуточно Казань! Квартиры от 1000 руб. посуточно. Мини-гостиницы. Отчетные документы16.forguest.ru Квартиры посуточно в Казани Уютные квартиры во всех районах Казани. Быстрая аренда квартир посуточно.fatyr.ru Новый Яндекс.Браузер! Удобные закладки и надежная защита. Браузер для приятных прогулок по сети!browser.yandex.ru 0+

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии - для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

где r - сопротивление проводника. В таком случае:

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них - осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики - закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

– В Европе теперь никто на пианино не играет,
играют на электричестве.
–На электричестве играть нельзя – током убьет.
–А они в резиновых перчатках играют…
–Э! В резиновых перчатках можно!
«Мимино»

Странно… Играют на электричестве, а убивает почему-то каким-то там током… Откуда в электричестве ток? И что это за ток? Здравствуйте, уважаемые! Давайте разбираться.

Ну, во-первых, начнём с того, почему это играть на электричестве в резиновых перчатках всё-таки можно, а, например, в железных или свинцовых – нельзя, хотя металлические прочнее? Дело все в том, что резина не проводит электричество, а железо и свинец – проводят, поэтому и током ударит. Стоп-стоп… Мы идем не в ту сторону, давайте, разворачиваемся… Ага… Начинать нужно с того, что все в нашей Вселенной состоит из мельчайших частичек – атомов. Эти частички настолько малы, что, например, человеческий волос по толщине в несколько миллионов раз превосходит размер самого маленького атома водорода. Атом состоит (см. рисунок 1.1) из двух основных частей – положительно заряженного ядра, состоящего в свою очередь из нейтронов и протонов и вращающихся по определенным орбитам вокруг ядра электронов.

Рисунок 1.1 – Строение электрона

Суммарный электрический заряд атома всегда (!) равен нулю, то есть атом электрически нейтрален. Электроны имеют довольно сильную связь с атомным ядром, однако, если приложить некоторую силу и «вырвать» один или несколько электронов из атома (посредством нагревания или трения, например), то атом превратиться в положительно заряженный ион, поскольку величина положительного заряда его ядра будет больше величины отрицательного суммарного заряда оставшихся электронов. И наоборот, – если каким-либо образом добавить к атому один или несколько электронов (но не посредством охлаждения…), то атом превратится в отрицательно заряженный ион.

Электроны, входящие в состав атомов любого элемента,абсолютно идентичны по своим характеристикам: заряду, размеру, массе.

Теперь, если посмотреть на внутренний состав любого элемента можно увидеть, что не весь объем элемента занимают атомы. Всегда, в любом материале так же присутствуют как отрицательно заряженные, так и положительно заряженные ионы, причем процесс преобразования «отрицательно заряженный ион–атом–положительно заряженный ион» происходит постоянно. В процессе этого преобразования образуются так называемые свободные электроны – электроны, не связанные ни с одним из атомов или ионом. Оказывается, что различных веществ количество этих свободных электронов разное.

Так же из курса физики известно, что вокруг любого заряженного тела (даже такого ничтожно малого, как электрон) существует так называемое невидимое электрическое поле, основными характеристиками которого являются напряженность и направление. Условно принято, что поле всегда направлено из точки положительного заряда к точке отрицательного заряда. Такое поле возникает, например, при натирании эбонитовой или стеклянной палочки о шерсть, при этом в процессе можно услышать характерный треск, явление которого мы рассмотрим позже. Причем, на стеклянной палочке будет образовываться положительный заряд, а на эбонитовой – отрицательный. Это как раз и будет означать переход свободных электронов одного вещества в другое (со стеклянной палочки в шерсть и из шерсти в эбонитовую палочку). Переход электронов означает изменение заряда. Для оценки этого явления существует специальная физическая величина – количество электричества, названная кулон, причем 1Кл= 6.24 10 18 электронов. Исходя из этого соотношения заряд одного электрона (или его по-другому называют элементарным электрическим зарядом) равен:

Так при чем же здесь все эти электроны и атомы… А вот при чём. Если взять материал с большим содержанием свободных электронов и поместить его в электрическое поле, то все свободные электроны будут двигаться в направлении положительной точки поля, а ионы – поскольку они имеют сильные межатомные (межионные) связи –оставаться внутри материала, хотя по идее они должны двигаться к той точке поля, заряд которой противоположен заряду иона. Это было доказано с помощью простого эксперимента.

Два различных материала (серебро и золото) соединили друг с другом и поместили в электрическое поле на несколько месяцев. Если бы наблюдалось движение ионов между материалами, то в месте контакта должен был бы произойти процесс диффузии и в узкой зоне серебра образоваться золото, а в узкой зоне золота – серебро, но такого не произошло, что и доказало неподвижность «тяжелых» ионов. На рисунке 2.1 показано движение положительной и отрицательной частиц в электрическом поле: отрицательно заряженные электроны движутся против направления поля, а положительно заряженные частицы – по направлению поля. Однако это справедливо только для частиц, не входящих в кристаллическую решетку какого-либо материала и не связанных между собой межатомными связями.

Рисунок 1.2 – Движение точечного заряда в электрическом поле

Движение происходит именно таким образом, потому как одноимённые заряды отталкиваются, а разноимённые – притягиваются: на частицу всегда действуют две силы: сила притяжения и сила отталкивания.

Так вот, именно упорядоченное движение заряженных частиц и называют электрическим током. Существует забавный факт: изначально считалось (до открытия электрона), что электрический ток порождён именно положительными частицами, поэтому направление тока соответствовало движению положительных частиц от «плюса» к «минусу», однако впоследствии обнаружилось обратное, но направление тока решено было оставить прежним, и в современной электротехнике осталась эта традиция. Так что всё на самом деле наоборот!

Рисунок 1.3 – Строение атома

Электрическое поле можно, хоть и характеризуется величиной напряженности, но создается вокруг любого заряженного тела. Например, если всё ту же стеклянную и эбонитовую палочки натереть о шерсть, то вокруг них возникнет электрическое поле. Электрическое поле существует около любого объекта и воздействует на другие объекты, сколь угодно далеко они бы ни располагались.Однако с ростом расстояния между ними напряженность поля уменьшается и её величиной можно пренебречь, так что два человека, стоящие рядом и имеющие некоторый заряд, хоть и создают электрическое поле, и между ними протекает электрический ток, но он настолько мал, что его величину трудно зафиксировать даже специальными приборами.

Так вот, пора бы уже побольше рассказать о том, что это за характеристика – напряженность электрического поля. Начинается всё с того, что в 1785 году французский военный инженер Шарль Огюстен де Кулон, отвлекшись от рисования военных карт, вывел закон, описывающий взаимодействие двух точечных зарядов:


Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Мы не будем углубляться в то, почему это именно так, просто поверим на слово господину Кулону и введём некоторые условия для соблюдения этого закона:

  • точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными не пересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  • их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  • взаимодействие в вакууме.

Математически закон записывается следующим образом:

где q 1 ,q 2 – величины взаимодействующих точечных зарядов,
r – расстояние между этими зарядами,
k – некоторый коэффициент, описывающий влияние среды.
На рисунке ниже приведено графическое пояснение закона Кулона.

Рисунок 1.4 – Взаимодействие точечных зарядов. Закон Кулона

Таким образом, сила взаимодействия между двумя точечными зарядами возрастает при увеличении этих зарядов и уменьшается при увеличении расстояния между зарядами, причём увеличение расстояния в два раза приводит к уменьшению силы в четыре раза. Однако подобная сила возникает не только между двумя зарядами, но и между зарядом и полем (и опять электрический ток!). Логично было бы предположить, что на различные заряды одно и то же поле оказывает различное влияние. Так вот отношение силы взаимодействия поля и заряда к величине этого заряда и называется напряжённостью электрического поля. При условии, что заряд и поле неподвижны и не изменяют своих характеристик с течением времени.

где F – сила взаимодействия,
q – заряд.
Причём, как говорилось ранее, поле имеет направление, и это возникает именно исходя из того, что сила взаимодействия имеет направление (является векторной величиной: одноимённые заряды притягиваются, разноимённые – отталкиваются).
После того, как я написал этот урок, я попросил моего друга прочитать его, оценить, так скажем. Кроме того, я задал ему один интересный на мой взгляд вопрос как раз по теме этого материала. Каково же было моё удивление, когда он ответил неверно. Попробуйте и Вы ответить на этот вопрос (он помещен в раздел задач в конце урока) и аргументировать свою точку зрения в комментариях.
И последнее: поскольку поле может переместить заряд из одной точки пространства в другую, оно обладает энергией, а, следовательно, может совершать работу. Этот факт пригодится нам в дальнейшем при рассмотрении вопросов работы электрического тока.
На этом первый урок окончен, но у нас так и остался без ответа вопрос, почему же, в резиновых перчатках током не убьет. Оставим его как интригу на следующий урок. Спасибо за внимание, до новых встреч!

  • Наличие свободных электронов в веществе является условием для возникновения электрического тока.
  • Для возникновения электрического тока необходимо электрическое поле, которое существует только вокруг тел, обладающих зарядом.
  • Направление протекания электрического тока обратно направлению движения свободных электронов – ток течёт от «плюса» к «минусу», а электроны наоборот – от «минуса» к «плюсу».
  • Заряд электрона равен 1.602 10 -19 Кл
  • Закон Кулона: модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

  • Предположим, что в городе-герое Москве имеется некая розетка, самая такая обычная розетка, которые есть и у Вас дома. Так же предположим, что мы протянули провода из Москвы во Владивосток и подключили во Владивостоке лампочку (опять же, лампа совершенно обычная, такая же освещает сейчас комнату и мне, и Вам). Итого, что мы имеем: лампочка, присоединенная к концам двух проводов во Владивостоке и розетку в Москве. Теперь вставим «московские» провода в розетку. Если мы не будем учитывать массу всяких условий и просто предположим, что лампочка во Владивостоке загорелась, то попробуйте предположить, доберутся ли электроны, которые в данный момент находятся в розетке в Москве в нить накала лампочки во Владивостоке? Что случится, если мы подключим лампочку не к розетке, а к аккумулятору?

Когда человек научился создавать и использовать электрический ток, качество его жизни резко возросло. Сейчас значение электроэнергии продолжает увеличиваться с каждым годом. Для того чтобы научиться разбираться в более сложных вопросах, связанных с электричеством, надо сначала понять, что такое электрический ток.

Что представляет собой ток

Определение электрического тока – это представление его в виде направленного потока движущихся носителей-частиц, заряженных положительно или отрицательно. Носителями заряда могут быть:

  • заряженные со знаком «минус» электроны, движущиеся в металлах;
  • ионы в жидкостях или газах;
  • положительно заряженные дырки от перемещающихся электронов в полупроводниках.

Что такое ток, определяется еще наличием электрического поля. Без него направленный поток заряженных частиц не возникнет.

Понятие об электрическом токе было бы неполным без перечисления его проявлений:

  1. Любому электротоку сопутствует магнитное поле;
  2. Проводники нагреваются при его прохождении;
  3. Электролиты изменяют химический состав.

Проводники и полупроводники

Электроток может существовать только в проводящей среде, но природа его протекания различна:

  1. В металлических проводниках присутствуют свободные электроны, которые начинают двигаться под воздействием электрического поля. Когда температура возрастает, повышается и сопротивление проводников, так как от тепла усиливается движение атомов в хаотичном порядке, что создает помехи свободным электронам;
  2. В жидкой среде, образованной электролитами, возникающее электрическое поле вызывает процесс диссоциации – формирования катионов и анионов, которые перемещаются в сторону положительных и отрицательных полюсов (электродов) в зависимости от знака заряда. Нагрев электролита приводит к уменьшению сопротивления из-за более активного разложения молекул;

Важно! Электролит может быть твердым, но природа протекания тока в нем идентична жидким.

  1. Газообразная среда также характеризуется наличием ионов, приходящих в движение. Образуется плазма. От излучения возникают и свободные электроны, участвующие в направленном движении;
  2. При создании электротока в вакууме электроны, высвобождающиеся на отрицательном электроде, движутся к положительному;
  3. В полупроводниках существуют свободные электроны, разрывающие связи от нагревания. На их местах остаются дырки, имеющие заряд со знаком «плюс». Дырки и электроны способны создавать направленное движение.

Нетокопроводящие среды называются диэлектрическими.

Важно! Направление тока соответствует направлению движения частиц-носителей заряда со знаком «плюс».

Род тока

  1. Постоянный. Для него характерны неизменное количественное значение тока и направление;
  2. Переменный. С течением времени периодически меняет свои характеристики. Подразделяется на несколько разновидностей, зависящих от изменяемого параметра. Преимущественно количественное значение тока и его направленность варьируются по синусоиде;
  3. Вихревые токи. Возникают, когда магнитный поток подвергается изменениям. Формируют закрытые контуры, не перемещаясь между полюсами. От вихревых токов вызывается интенсивное тепловыделение, как следствие, возрастают потери. В сердечниках электромагнитных катушек их ограничивают, применяя конструкцию из отдельных изолированных пластин вместо цельной.

Характеристики электроцепи

  1. Сила тока. Это количественное измерение заряда, проходящего во временную единицу по сечению проводников. Заряды измеряются в кулонах (Кл), временная единица – секунда. Сила тока – это Кл/с. Полученное соотношение назвали ампером (А), в чем измеряется количественное значение тока. Измеряющий прибор – амперметр, последовательно подключаемый в цепь электрических соединений;
  2. Мощность. Электроток в проводнике должен преодолеть сопротивление среды. Затраченная работа по его преодолению в течение определенного временного промежутка будет мощностью. При этом происходит превращение электроэнергии в другие виды энергии – совершается работа. Мощность зависит от силы тока, напряжения. Их произведение определит активную мощность. При умножении еще на время получается расход электроэнергии – то, что показывает счетчик. Измеряться мощность может в вольтамперах (ВА, кВА, мВА) или в ваттах (Вт, кВт, мВт);
  3. Напряжение. Одна их трех важнейших характеристик. Для протекания тока необходимо создать разность потенциалов двух точек замкнутой цепи электрических соединений. Напряжение характеризуется работой, производимой электрическим полем при передвижении единичного носителя заряда. Согласно формуле, единицей измерения напряжения является Дж/Кл, что соответствует вольту (В). Измеряющий прибор – вольтметр, подключается параллельно;
  4. Сопротивление. Характеризует способность проводников пропускать электроток. Определяется материалом проводника, длиной и площадью его сечения. Измерение – в омах (Ом).

Законы для электротока

Электрические цепи рассчитывают с помощью трех главных законов:

  1. Закон Ома. Исследовался и был сформулирован ученым-физиком из Германии в начале 19-го века для постоянного тока, затем его применили также для переменного. Он устанавливает соотношение между силой тока, напряжением и сопротивлением. На основе закона Ома рассчитывается практически любая электроцепь. Основная формула: I = U/R, или сила тока находится в прямой пропорциональной зависимости с напряжением и в обратной – с сопротивлением;

  1. Закон Фарадея. Относится к электромагнитной индукции. Появление индуктивных токов в проводниках обуславливается воздействием магнитного потока, меняющегося во времени из-за наведения в закрытом контуре ЭДС (электродвижущей силы). Модуль наведенной ЭДС, измеряемой в вольтах, пропорционален скорости, с которой изменяется магнитный поток. Благодаря закону индукции работают генераторы, вырабатывающие электроэнергию;
  2. Закон Джоуля-Ленца. Имеет важное значение при расчете нагрева проводников, что используется для проектирования и изготовления нагревательных, осветительных приборов, другого электрооборудования. Закон позволяет определить количество теплоты, выделяющееся при прохождении электрического тока:

где I – сила протекающего тока, R – сопротивление, t – время.

Электричество в атмосфере

В атмосфере может существовать электрическое поле, происходят ионизационные процессы. Хотя природа их возникновения до конца не ясна, существуют разные объясняющие гипотезы. Самая популярная – конденсатор, как аналог для представления электричества в атмосфере. Его пластинами можно обозначить земную поверхность и ионосферу, между которыми циркулирует диэлектрик – воздух.

Виды атмосферного электричества:

  1. Грозовые разряды. Молнии с видимым свечением и громовыми раскатами. Напряжение молний достигает сотен миллионов вольт при силе тока 500 000 А;

  1. Огни Святого Эльма. Коронный разряд электричества, образующийся вокруг проводов, мачт;
  2. Шаровая молния. Разряд в форме шара, перемещающийся по воздуху;
  3. Полярное сияние. Многоцветное свечение земной ионосферы под воздействием заряженных частиц, проникающих из космоса.

Человеком используются полезные свойства электрического тока во всех областях жизни:

  • освещение;
  • передача сигнала: телефон, радио, телевидение, телеграф;
  • электротранспорт: поезда, электромобили, трамваи, троллейбусы;
  • создание комфортного микроклимата: отопление и кондиционирование воздуха;
  • медицинская техника;
  • бытовое применение: электроприборы;
  • компьютеры и мобильные устройства;
  • промышленность: станки и оборудование;
  • электролиз: получение алюминия, цинка, магния и других веществ.

Опасность электрического тока

Прямой контакт с электрическим током без средств защиты смертельно опасен для человека. Возможны несколько видов воздействий:

  • термический ожог;
  • электролитическое расщепление крови и лимфы с изменением ее состава;
  • судорожные мышечные сокращения могут спровоцировать фибрилляцию сердца вплоть до полной его остановки, нарушить работу дыхательной системы.

Важно! Ток, ощущаемый человеком, начинается со значения 1 мА, если величина тока 25 мА, возможны серьезные негативные изменения в организме.

Самая главная характеристика электрического тока – он может совершать полезную работу для человека: осветить дом, постирать и высушить одежду, приготовить обед, обогреть жилище. Сейчас значимое место занимает его использование в передаче информации, хотя это не требует большого расхода электроэнергии.

Видео

Загрузка...