inlaber.ru

Оборудования и системы автоматического управления теплоснабжением. Автоматические системы регулирования теплоснабжения

1. Распределение тепловой нагрузки потребителей тепловой энергии в системе теплоснабжения между источниками тепловой энергии, поставляющими тепловую энергию в данной системе теплоснабжения, осуществляется органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, путем внесения ежегодно изменений в схему теплоснабжения.

2. Для распределения тепловой нагрузки потребителей тепловой энергии все теплоснабжающие организации, владеющие источниками тепловой энергии в данной системе теплоснабжения, обязаны представить в орган, уполномоченный в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, заявку, содержащую сведения:

1) о количестве тепловой энергии, которую теплоснабжающая организация обязуется поставлять потребителям и теплоснабжающим организациям в данной системе теплоснабжения;

2) об объеме мощности источников тепловой энергии, которую теплоснабжающая организация обязуется поддерживать;

3) о действующих тарифах в сфере теплоснабжения и прогнозных удельных переменных расходах на производство тепловой энергии, теплоносителя и поддержание мощности.

3. В схеме теплоснабжения должны быть определены условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения. При наличии таких условий распределение тепловой нагрузки между источниками тепловой энергии осуществляется на конкурсной основе в соответствии с критерием минимальных удельных переменных расходов на производство тепловой энергии источниками тепловой энергии, определяемыми в порядке, установленном основами ценообразования в сфере теплоснабжения, утвержденными Правительством Российской Федерации, на основании заявок организаций, владеющих источниками тепловой энергии, и нормативов, учитываемых при регулировании тарифов в области теплоснабжения на соответствующий период регулирования.

4. Если теплоснабжающая организация не согласна с распределением тепловой нагрузки, осуществленным в схеме теплоснабжения, она вправе обжаловать решение о таком распределении, принятое органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, в уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти.

5. Теплоснабжающие организации и теплосетевые организации, осуществляющие свою деятельность в одной системе теплоснабжения, ежегодно до начала отопительного периода обязаны заключать между собой соглашение об управлении системой теплоснабжения в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

6. Предметом указанного в части 5 настоящей статьи соглашения является порядок взаимных действий по обеспечению функционирования системы теплоснабжения в соответствии с требованиями настоящего Федерального закона. Обязательными условиями указанного соглашения являются:

1) определение соподчиненности диспетчерских служб теплоснабжающих организаций и теплосетевых организаций, порядок их взаимодействия;

2) порядок организации наладки тепловых сетей и регулирования работы системы теплоснабжения;

3) порядок обеспечения доступа сторон соглашения или, по взаимной договоренности сторон соглашения, другой организации к тепловым сетям для осуществления наладки тепловых сетей и регулирования работы системы теплоснабжения;

4) порядок взаимодействия теплоснабжающих организаций и теплосетевых организаций в чрезвычайных ситуациях и аварийных ситуациях.

7. В случае, если теплоснабжающие организации и теплосетевые организации не заключили указанное в настоящей статье соглашение, порядок управления системой теплоснабжения определяется соглашением, заключенным на предыдущий отопительный период, а если такое соглашение не заключалось ранее, указанный порядок устанавливается органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения.

Важной коммунальной услугой в современных городах является теплоснабжение. Система теплоснабжения служит для удовлетворения потребностей населения в услугах отопления жилых и общественных зданий, горячего водоснабжения (подогрев воды) и вентиляции.

Современная система теплоснабжения городов включает следующие основные элементы: источник тепла, тепловые передающие сети и устройства, а также потребляющие тепло оборудование и устройства - системы отопления, вентиляции и горячего водоснабжения.

Системы теплоснабжения городов классифицируются по следующим критериям:

  • - степень централизации;
  • - род теплоносителя;
  • - способ выработки тепловой энергии;
  • - способ подачи воды на горячее водоснабжение и отопление;
  • - количество трубопроводов тепловых сетей;
  • - способ обеспечения потребителей тепловой энергией и др.

По степени централизации теплоснабжения различают два основных вида:

  • 1) централизованные системы теплоснабжения, которые получили развитие в городах и районах с преимущественно многоэтажной застройкой. Среди них можно выделить: высокоорганизованное централизованное теплоснабжение на базе комбинированной выработки тепла и электроэнергии на ТЭЦ - теплофикация и централизованное теплоснабжение от районных отопительных и промышленно-отопительных котельных;
  • 2) децентрализованное теплоснабжение от мелких придомовых котельных установок (пристроенных, подвальных, крышных), индивидуальных отопительных приборов и т.п.; при этом отсутствуют тепловые сети и связанные с ними потери тепловой энергии.

По роду теплоносителя различают паровые и водяные системы теплоснабжения. В паровых системах теплоснабжения в качестве теплоносителя выступает перегретый пар. Эти системы используются в основном для технологических целей в промышленности, электроэнергетике. Для нужд коммунального теплоснабжения населения вследствие повышенной опасности при их эксплуатации они практически не используются.

В водяных системах теплоснабжения теплоносителем является горячая вода. Эти системы применяются в основном для снабжения тепловой энергией городских потребителей, для горячего водоснабжения и отопления, а в некоторых случаях - и для технологических процессов. В нашей стране водяные системы теплоснабжения составляют более половины всех тепловых сетей.

По способу выработки тепловой энергии различают:

  • - комбинированную выработку тепла и электроэнергии на теплоэлектроцентралях. В этом случае тепло рабочего тепловодяного пара используется для получения электроэнергии при расширении пара в турбинах, а затем оставшееся тепло отработанного пара используется для нагрева воды в теплообменниках, которые составляют теплофикационное оборудование ТЭЦ. Горячая вода используется для теплоснабжения городских потребителей. Таким образом, на ТЭЦ тепло высокого потенциала используется для выработки электроэнергии, а тепло низкого потенциала - для теплоснабжения. В этом состоит энергетический смысл комбинированной выработки тепла и электроэнергии, которая обеспечивает существенное снижение удельных расходов топлива при получении тепловой и электрической энергии;
  • - раздельную выработку тепловой энергии, когда нагрев воды в котельных установках (тепловых станциях) отделен от выработки электрической энергии.

По способу подачи воды на горячее водоснабжение водяные системы теплоснабжения делятся на открытые и закрытые. В открытых водяных системах теплоснабжения горячая вода поступает к водоразборным приборам местной системы горячего водоснабжения непосредственно из тепловых сетей. В закрытых водяных системах теплоснабжения воду из тепловых сетей используют только как греющую среду для нагревания в водоподогревателях - теплообменниках (бойлерах) водопроводной воды, которая поступает затем в местную систему горячего водоснабжения.

По количеству трубопроводов различают однотрубные, двухтрубные и многотрубные системы теплоснабжения.

По способу обеспечения потребителей тепловой энергией различаются одноступенчатые и многоступенчатые системы теплоснабжения - в зависимости от схем присоединения абонентов (потребителей) к тепловым сетям. Узлы присоединения потребителей тепла к тепловым сетям называют абонентскими вводами. На абонентском вводе каждого здания устанавливают подогреватели горячего водоснабжения, элеваторы, насосы, арматуру, контрольно-измерительные приборы для регулирования параметров и расхода теплоносителя по местным отопительным и водоразборным приборам. Поэтому часто абонентский ввод называют местным тепловым пунктом (МТП). Если абонентский ввод сооружается для отдельного объекта, то его называют индивидуальным тепловым пунктом (ИТП).

При организации одноступенчатых систем теплоснабжения абоненты-потребители тепла присоединяются непосредственно к тепловым сетям. Такое непосредственное присоединение отопительных приборов ограничивает пределы допустимого давления в тепловых сетях, так как высокое давление, необходимое для транспорта теплоносителя к конечным потребителям, опасно для радиаторов отопления. В силу этого одноступенчатые системы применяют для теплоснабжения ограниченного числа потребителей от котельных с небольшой длиной тепловых сетей.

В многоступенчатых системах между источником тепла и потребителями размещают центральные тепловые (ЦТП) или контрольно-распределительные пункты (КРП), в которых параметры теплоносителя могут изменяться по требованию местных потребителей. Оборудуются ЦТП и КРП насосными и водонагревательными установками, регулирующей и предохранительной арматурой, контрольно-измерительными приборами, предназначенными для обеспечения группы потребителей в квартале или районе тепловой энергией необходимых параметров. С помощью насосных или водонагревательных установок магистральные трубопроводы (первая ступень) частично или полностью гидравлически изолируются от распределительных сетей (вторая ступень). Из ЦТП или КРП теплоноситель с допустимыми или установленными параметрами по общим или отдельным трубопроводам второй ступени подается в МТП каждого здания для местных потребителей. При этом в МТП производятся лишь элеваторное подмешивание обратной воды из местных отопительных установок, местное регулирование расхода воды на горячее водоснабжение и учет расхода тепла.

Организация полной гидравлической изоляции тепловых сетей первой и второй ступени является важнейшим мероприятием повышения надежности теплоснабжения и увеличения дальности транспорта тепла. Многоступенчатые системы теплоснабжения с ЦТП и КРП позволяют в десятки раз уменьшить число местных подогревателей горячего водоснабжения, циркуляционных насосов и регуляторов температуры, устанавливаемых в МТП при одноступенчатой системе. В ЦТП возможна организация обработки местной водопроводной воды для предупреждения коррозии систем горячего водоснабжения. Наконец, при сооружении ЦТП и КРП в значительной мере сокращаются удельные эксплуатационные затраты и затраты на содержание персонала для обслуживания оборудования в МТП.

Тепловая энергия в виде горячей воды или пара транспортируется от ТЭЦ или котельной к потребителям (к жилым домам, общественным зданиям и промышленным предприятиям) по специальным трубопроводам - тепловым сетям. Трасса тепловых сетей в городах н других населенных пунктах должна предусматриваться в отведенных для инженерных сетей технических полосах.

Современные тепловые сети городских систем представляют собой сложные инженерные сооружения. Их протяженность от источника до потребителей составляет десятки километров, а диаметр магистралей достигает 1400 мм. В состав тепловых сетей входят теплопроводы; компенсаторы, воспринимающие температурные удлинения; отключающее, регулирующее и предохранительное оборудование, устанавливаемое в специальных камерах или павильонах; насосные станции; районные тепловые пункты (РТП) и тепловые пункты (ТП).

Тепловые сети разделяются на магистральные, прокладываемые на главных направлениях населенного пункта, распределительные - внутри квартала, микрорайона - и ответвления к отдельным зданиям и абонентам.

Схемы тепловых сетей применяют, как правило, лучевые. Во избежание перерывов в снабжении потребителя теплом предусматривают соединение отдельных магистральных сетей между собой, а также устройство перемычек между ответвлениями. В больших городах при наличии нескольких крупных источников тепла сооружают более сложные тепловые сети по кольцевой схеме.

Для обеспечения надежного функционирования таких систем необходимо их иерархическое построение, при котором всю систему расчленяют на ряд уровней, каждый из которых имеет свою задачу, уменьшающуюся по значению от верхнего уровня к нижнему. Верхний иерархический уровень составляют источники тепла, следующий уровень - магистральные тепловые сети с РТП, нижний - распределительные сети с абонентскими вводами потребителей. Источники тепла подают в тепловые сети горячую воду заданной температуры и заданного давления, обеспечивают циркуляцию воды в системе и поддержание в ней должного гидродинамического и статического давления. Они имеют специальные водоподготовительные установки, где осуществляется химическая очистка и дезаэрация воды. По магистральным тепловым сетям в узлы теплопотребления транспортируются основные потоки теплоносителя. В РТП теплоноситель распределяется по районам, в сетях районов поддерживаются автономные гидравлический и тепловой режимы. Организация иерархического построения систем теплоснабжения обеспечивает их управляемость в процессе эксплуатации.

Для управления гидравлическими и тепловыми режимами системы теплоснабжения ее автоматизируют, а количество подаваемого тепла регулируют в соответствии с нормами потребления и требованиями абонентов. Наибольшее количество тепла расходуется на отопление зданий. Отопительная нагрузка изменяется с изменением наружной температуры. Для поддержания соответствия подачи тепла потребителям в нем применяют центральное регулирование на источниках тепла. Добиться высокого качества теплоснабжения, применяя только центральное регулирование, не удается, поэтому на тепловых пунктах и у потребителей применяют дополнительное автоматическое регулирование. Расход воды на горячее водоснабжение непрерывно изменяется, и для поддержания устойчивого теплоснабжения гидравлический режим тепловых сетей автоматически регулируют, а температуру горячей воды поддерживают постоянной и равной 65 °С.

К числу основных системных проблем, осложняющих организацию эффективного механизма функционирования теплоснабжения в современных городах, можно отнести следующие:

  • - значительный физический и моральный износ оборудования систем теплоснабжения;
  • - высокий уровень потерь в тепловых сетях;
  • - массовое отсутствие у жителей приборов учета тепловой энергии и регуляторов отпуска тепла;
  • - завышенные оценки тепловых нагрузок у потребителей;
  • - несовершенство нормативно-правовой и законодательной базы.

Оборудование предприятий теплоэнергетики и тепловых сетей имеют в среднем по России высокую степень износа, достигшую 70%. В общем числе отопительных котельных преобладают мелкие, малоэффективные, процесс их реконструкции и ликвидации протекает очень медленно. Прирост тепловых мощностей ежегодно отстает от возрастающих нагрузок в 2 раза и более. Из-за систематических перебоев в обеспечении котельных топливом во многих городах ежегодно возникают серьезные трудности в теплоснабжении жилых кварталов и домов. Пуск систем отопления осенью растягивается на несколько месяцев, «недотопы» жилых помещений в зимний период стали нормой, а не исключением; темпы замены оборудования снижаются, увеличивается количество оборудования, находящегося в аварийном состоянии. Это предопределило в последние годы резкий рост аварийности систем теплоснабжения.

В. Г. Семенов, главный редактор, «Новости теплоснабжения»

Понятие системы

Все привыкли к выражениям «система теплоснабжения» , «система управления» , «автоматизированные системы управления» . Одно из простейших определений любой системы: множество связанных действующих элементов. Более сложное определение дает академик П. К. Анохин: «Системой моно назвать только такой комплекс избирательно - вовлеченных компонентов, у которых взаимодействие приобретает характер взаимосодействия на получение фокусированного полезного результата» . Получение такого результата является целью системы, а цель формируется на основе потребности. В рыночной экономике технические системы, а также системы управления ими формируются на основе спроса, т. е. потребности, за удовлетворение которой кто - то готов платить.

Технические системы теплоснабжения состоят из элементов (ТЭЦ, котельные, сети, аварийные службы и т. д.), имеющих весьма жесткие технологические связи. «Внешней средой» для технической системы теплоснабжения являются потребители разных типов; газовые, электрические, водопроводные сети; погода; новые застройщики и т. д. Они обмениваются энергией, веществом и информацией.

Любая система существует в пределах каких - то ограничений, налагаемых, как правило, покупателями или уполномоченными органами. Это требования качества теплоснабжения, экологии, безопасности труда, ценовые ограничения.

Существуют активные системы, способные противостоять негативным воздействиям окружающей среды (неквалифицированным действиям администраций разных уровней, конкуренции других проектов...), и пассивные, у которых это свойство отсутствует.

Системы оперативного технического управления теплоснабжением относятся к типовым человеко - машинным системам, не являются очень сложными и достаточно легко автоматизируются. Фактически они являются подсистемами системы более высокого уровня - управления теплоснабжением на какой - то ограниченной территории.

Системы управления

Управлением называется процесс целенаправленного воздействия на систему, обеспечивающий повышение ее организованности, достижение того или иного полезного эффекта. Любая система управления разделяется на управляющую и управляемую подсистемы. Связь от управляющей подсистемы к управляемой называется прямой связью. Такая связь существует всегда. Противоположная по направлению связь называется обратной. Понятие обратной связи является фундаментальным в технике, природе и обществе. Считается, что управление без сильных обратных связей не эффективно, т. к. не обладает способностью к самовыявлению ошибок, формулировке проблем, не позволяет использовать возможности саморегулирования системы, а также опыт и знания специалистов.

С. А. Оптнер считает даже, что управление есть цель обратной связи. «Обратная связь воздействует на систему. Воздействие есть средство изменения существующего состояния системы путем возбуждения силы, позволяющей это сделать» .

В правильно организованной системе отклонение ее параметров от нормы либо отклонение от правильного направления развития перерастает в обратную связь и инициирует процесс управления. «Само отклонение от нормы служит стимулом возвращения к норме» (П. К. Анохин). Очень важно также, чтобы собственная цель управляющей системы не противоречила цели управляемой системы, т. е. той цели, для которой она создана. Принято считать, что требование «вышестоящей» организации безусловно для «нижестоящей» и автоматически трансформируется в цель для нее. Это иногда может привести к подмене цели.

Правильная цель управляющей системы - выработка управляющих воздействий на основе анализа информации об отклонениях или, другими словами, решение проблем.

Проблема есть ситуация несоответствия желаемого и существующего. Мозг человека устроен так, что мыслить в каком - то направлении человек начинает только тогда, когда выявляется проблема. Поэтому правильное определение проблемы предопределяет правильное управленческое решение. Выделяют две категории проблем: стабилизации и развития.

Проблемами стабилизации называют такие, решение которых направлено на предотвращение, устранение или компенсацию возмущений, нарушающих текущую деятельность системы. На уровне предприятия, региона или отрасли решение этих проблем обозначают термином управление производством.

Проблемами развития и совершенствования систем называют такие, решение которых направлено на повышение эффективности функционирования за счет изменения характеристик объекта управления или системы управления.

С точки зрения системного подхода проблема есть разница между существующей и желаемой системой. Система, заполняющая промежуток между ними, является объектом конструирования и называется решением проблемы.

Анализ существующих систем управления теплоснабжением

Системный подход - это подход к исследованию объекта (проблемы, процесса) как к системе, в которой выделены элементы, внутренние связи и связи с окружающей средой, влияющие на результаты функционирования, а цели каждого из элементов определены исходя из общего предназначения системы.

Цель создания любой централизованной системы теплоснабжения - обеспечение качественного, надежного теплоснабжения за минимальную цену. Эта цель, устраивающая потребителей, граждан, администрацию и политиков. Такая же цель должна быть и у системы управления теплоснабжением.

Сегодня существует 2 основных типа систем управления теплоснабжением:

1) администрация муниципального образования или региона и подчиненные ей руководители государственных теплоснабжающих предприятий;

2) руководящие органы немуниципальных теплоснабжающих предприятий.

Рис. 1. Обобщенная схема существующей системы управления теплоснабжением.

Обобщенная схема системы управления теплоснабжением представлены на рис. 1. В ней представлены только те структуры (окружающая среда), которые реально могут осуществлять воздействие на управляющие системы:

Увеличить или уменьшить доходы;

Заставить пойти на дополнительные расходы;

Сменить руководство предприятий.

Для реального анализа мы должны исходить из предпосылки, что выполняется только то, за что платят или могут уволить, а не то, что декларируется. Государство

Законодательство, регулирующее деятельность предприятий по теплоснабжению, практически отсутствует. Не прописаны даже процедуры государственного регулирования локальных естественных монополий в теплоснабжении.

Теплоснабжение - основная проблема при реформах ЖКХ и РАО «ЕЭС России» , она не может быть решена отдельно ни в одной, ни в другой, поэтому практически не рассматривается, хотя именно через теплоснабжение эти реформы должны были бы быть взаимоувязаны. Нет даже утвержденной правительством концепции развития теплоснабжения страны, не говоря уж о реальной программе действий.

Качество теплоснабжения федеральные органы управления никак не регулируют, нет даже нормативных документов, определяющих критерии качества. Надежность теплоснабжения регулируется только через технические надзорные органы. Но т. к. взаимодействие между ними и тарифными органами ни в одном нормативном документе не прописано, оно часто отсутствует. У предприятий же имеется возможность не выполнять любые предписания, обосновывая это отсутствием финансирования.

Технический надзор по существующим нормативным документам сводится к контролю отдельных технических узлов, причем тех, по которым существует больше правил. Система во взаимодействии всех ее элементов не рассматривается, не выявляются мероприятия, дающие наибольший общесистемный эффект.

Стоимость теплоснабжения регулируется только формально. Тарифное законодательство настолько общее, что практически все отдано на усмотрение федеральной и в большей степени региональных энергетических комиссий. Нормативы теплопотребления регулируются только для новых зданий. В государственных программах энергосбережения раздел по теплоснабжению практически отсутствует.

В итоге роль государства отвелась к взиманию налогов и, через надзорные органы, информации местных органов власти о недостатках, существующих в теплоснабжении.

За работу естественных монополий, за функционирование отраслей, обеспечивающих возможность существования нации, отвечает перед парламентом исполнительная власть. Проблема не в том, что федеральные органы функционируют неудовлетворительно, а в том, что в структуре федеральных органов фактически нет структуры, от

Система автоматического регулирования теплоснабжения состоит из следующих модулей, каждый из которых выполняет собственную задачу:

  • Основной управляющий контроллер. Главная деталь контроллера – микропроцессор с возможностью программирования. Иными словами, можно ввести данные, в соответствии с которыми будет функционировать автоматическая система. Температура может изменяться в соответствии со временем суток, например, по окончании рабочего дня приборы перейдут на минимальную мощность, а перед его началом, наоборот, выйдут на максимум, чтобы прогреть помещения до прихода смены. Контроллер может выполнять регулировку тепловых установок и в автоматическом режиме, на основе собираемых другими модулями данных;
  • Термические датчики. Датчики воспринимают температуру теплоносителя системы, а также окружающей среды, посылают соответствующие команды на контроллер. Наиболее современные модели данной автоматики посылают сигналы по беспроводным каналам связи, поэтому прокладка сложных систем проводов и кабелей не нужна, что упрощает и ускоряет монтаж;
  • Панель ручного управления. Здесь сконцентрированы основные клавиши и переключатели, позволяющие вручную управлять САРТ. Вмешательство человека необходимо при проведении тестовых запусков, подключении новых модулей, модернизации системы. Чтобы добиться максимального удобства, на панели предусматривается жидкокристаллический дисплей, позволяющий в режиме реального времени отслеживать все показатели, контролировать их соответствие нормативам, своевременно предпринимать действия, если они выходят за установленные лимиты;
  • Температурные регуляторы. Это исполнительные устройства, определяющие текущую производительность САРТ. Регуляторы могут быть механическими или электронными, но задача их одна – корректировка сечения труб в соответствии с актуальными внешними условиями и потребностями. Изменение пропускной способности каналов дает возможность уменьшить или, наоборот, увеличить объемы поступающего к радиаторам теплоносителя, за счет чего температура вырастет или уменьшится;
  • Насосное оборудование. САРТ с автоматикой предполагает, что циркуляция теплоносителя обеспечивается насосами, создающими необходимое давление, нужно для определенной скорости потока воды. Естественная схема существенно ограничивает возможности регулировки.
Вне зависимости от того, где будет эксплуатироваться автоматизированная система, в небольшом коттедже или на крупном предприятии, к ее проектированию и внедрению нужно подходить со всей ответственностью. Самостоятельно провести необходимые расчеты невозможно, все работы лучше доверять специалистам. Найти их можно в нашей организации. Многочисленные положительные отзывы клиентов, десятки реализованных проектов высокой степени сложности – наглядные свидетельства нашего профессионализма и ответственного отношения!

В рамках поставки электрощитового оборудования были поставлены силовые шкафы и шкафы управления для двух корпусов (ИТП). Для приема и распределения электроэнергии в тепловых пунктах используются вводно-распределительные устройства, состоящие из пяти панелей каждое (всего 10 панелей). В вводных панелях установлены переключающие рубильники, ограничители перенапряжения, амперметры и вольтметры. Панели АВР в ИТП1 и ИТП2 реализованы на базе блоков автоматического ввода резерва. В распределительных панелях ВРУ установлены аппараты защиты и коммутации (контакторы, устройства плавного пуска, кнопки и лампы) технологического оборудования тепловых пунктов. Все автоматические выключатели снабжены контактами состояния, сигнализирующими об аварийном отключении. Эта информация передается на контроллеры, установленные в шкафах автоматики.

Для контроля и управления оборудованием используется контроллеры ОВЕН ПЛК110. К ним подключены модули ввода/вывода ОВЕН МВ110-224.16ДН, МВ110-224.8А, МУ110-224.6У, а также сенсорные панели оператора.

Ввод теплоносителя осуществляется непосредственно в помещение ИТП. Подача воды на горячее водоснабжение, отопление и теплоснабжение воздухонагревателей систем вентиляции воздуха осуществляется с коррекцией по температуре наружного воздуха.

Отображение технологических параметров, аварий, состояние оборудования и диспетчерское управление ИТП осуществляется с АРМ диспетчеров в объединенном ЦДП здания. На сервере диспетчеризации осуществляется хранение архива технологических параметров, аварий, состояния оборудования ИТП.

Автоматизацией тепловых пунктов предусматривается:

  • поддержание температуры теплоносителя, подаваемого в системы отопления и вентиляции, в соответствии с температурным графиком;
  • поддержание температуры воды в системе ГВС на подаче потребителям;
  • программирование различных температурных режимов по часам суток, дням недели и праздничным дням;
  • контроль соблюдения значений параметров, определяемых технологическим алгоритмом, поддержка технологических и аварийных границ параметров;
  • контроль температуры теплоносителя, возвращаемого в тепловую сеть системы теплоснабжения, по заданному температурному графику;
  • измерение температуры наружного воздуха;
  • поддержание заданного перепада давления между подающим и обратным трубопроводами систем вентиляции и отопления;
  • управление циркуляционными насосами по заданному алгоритму:
    • включение/выключение;
    • управление насосным оборудованием с частотными приводами по сигналам от ПЛК, установленным в шкафах автоматики;
    • периодическое переключение основной/резервный для обеспечения одинаковой наработки;
    • автоматическое аварийное переключение на резервный насос по контролю датчика перепада давления;
    • автоматическое поддержание заданного перепада давления в системах теплопотребления.
  • управление регулирующими клапанами теплоносителя в первичных контурах потребителей;
  • управление насосами и клапанами подпитки контуров отопления вентиляции;
  • задание значений технологических и аварийных параметров через систему диспетчеризации;
  • управление дренажными насосами;
  • контроль состояния электрических вводов по фазам;
  • синхронизация времени контроллера с единым временем системы диспетчеризации (СОЕВ);
  • пуск оборудования после восстановления электропитания в соответствии с заданным алгоритмом;
  • отправка аварийных сообщений в систему диспетчеризации.

Информационный обмен между контроллерами автоматизации и верхним уровнем (АРМ со специализированным ПО диспетчеризации MasterSCADA) осуществляется по протоколу Modbus/TCP.

Загрузка...