inlaber.ru

Московский государственный университет печати. Фазовые состояния полимеров В каких фазовых состояниях существуют полимеры

В полимерных твердых телах различают фазовые переходы, связанные со структурными превращениями, и релаксационные, связанные с изменением интенсивности внутримолекулярной подвижности.

Механические свойства полимеров зависят от структуры, физического состояния, температуры и скорости воздействия. Физические состояния полимеров непосредственно связаны с физической структурой и интенсивностью внутримолекулярного теплового движения в них. Переход из одного физического состояния в другое называют температурным переходом.

В зависимости от температуры, полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Схема деформируемости полимера, в зависимости от температуры, приведена на рис.3. 4.

Рис. 3. 4. Термомеханическая кривая полимера

Переход из одного состояния в другое происходит в некотором интервале температур. Средние температуры, при которых наблюдается изменение физического состояния, называются температурами перехода. Температура перехода из стеклообразного состояния в высокоэластическое (и обратно) называется температурой стеклования (Т с), а температура перехода из высокоэластического состояния в вязкотекучее (и обратно) называется температурой текучести (Т т).

Если полимер находится в кристаллическом состоянии, то ниже температуры кристаллизации (перехода аморфной фазы в кристаллическую) он находится в твердом состоянии, но обладает, так же как и аморфный полимер, различной деформируемостью ниже и выше температуры стеклования. Выше температуры кристаллизации кристаллическая часть полимера плавится, и термомеханическая кривая почти скачкообразно достигает высокоэластических деформаций, характерных для некристаллического полимера. Если полимер слабо закристаллизован, то выше температуры стеклования он деформируется практически как аморфный полимер.

Повышение температуры облегчает деформируемость полимера. Поэтому температуры перехода являются основными характеристиками при выборе температуры переработки и эксплуатации полимерных материалов.

Рассмотрим особенности трех состояний полимеров.

Стеклообразное состояние. Температура стеклования разделяет стеклообразное и эластическое состояния аморфного полимера. Ниже температуры стеклования Т с, происходит замораживание кооперативной подвижности независимых элементов основной цепи макромолекул – сегментов и фиксирование неравновесной упаковки макромолекул – застекловывание полимера.

При понижении температуры ниже Т с уменьшается амплитуда колебаний и количество флуктуаций, приводящих к перескоку макромолекулы из одного положения в другое. Это, в свою очередь, приводит к увеличению плотности упаковки молекул и, следовательно, плотности всего образца. При этом подвижность всех сегментов макромолекул становится ограниченной, и полимер переходит в стеклообразное состояние.

Если к такому полимеру приложить деформирующее усилие, то вначале, за счет изменения валентных углов между сегментами, возникает обратимая упругая деформация, величина которой невелика и обычно не превышает нескольких процентов. Как только напряжения станут соизмеримы с величиной межмолекулярных сил, начнется взаимное перемещение сегментов макромолекул. Чтобы подчеркнуть принципиальное различие в механизмах больших деформаций в стеклообразных полимерах и металлах был предложен термин «вынужденная эластичность» для обозначения больших деформаций полимеров. Напряжение, при котором наблюдается переход от начальной упругой к вынужденной деформации, получило название «предела вынужденной эластичности». Предел вынужденной эластичности заметно меняется с изменением скорости деформации. Диаграмма растяжения представлена на рис. 3.5 а.

Рис. 3.5. Диаграммы растяжения полимеров в стеклообразном (а), хрупком (б) и высокоэластическом (в) состояниях: I – область упругих деформаций; II – область вынужденноэластической (а) и высокоэластической (б) деформации

При дальнейшем понижении температуры ниже температуры стеклования в образце наблюдается уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Величина механической энергии, необходимая для активации сегментов и изменения конформации макромолекул, может оказаться выше предела прочности. Полимер разрушается как хрупкое тело при ничтожно малой величине деформации (рис. 3.5, б). Температура, при которой наблюдается это явление, называется температурой хрупкости (Т хр).

Высокоэластическое состояние. Если нагревать застеклованный полимер, то сразу после того, как будет превышена температура стеклования, образец начнет размягчаться и переходить в высокоэластическое состояние. Последнее характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к стремлению макромолекул принять самые разнообразные конформации. Наряду с двумя крайними конформациями – полностью выпрямленной и полностью скрученной – существует множество конформаций, обусловленных разной степенью изогнутости макромолекул.

При действии нагрузки макромолекулы, входящие в состав надмолекулярных образований, могут менять свою форму – из скрученных становиться более вытянутыми, что обеспечивает высокую эластичность полимера. После снятия нагрузки тепловое движение более или менее быстро, в зависимости от температуры и величины межмолекулярного взаимодействия, возвратит макромолекулу из вытянутой формы в прежнюю равновесную форму, обеспечив тем самым обратимый характер деформации. Диаграмма деформации такого полимера представлена на рис. 3.5 в.

Вязкотекучее состояние. При дальнейшем повышении температуры выше Т т полимер переходит в вязкотекучее состояние. В этом состоянии он способен необратимо течь под воздействием иногда сравнительно небольших внешних усилий. Процесс вязкого течения обязательно сопровождается раскручиванием макромолекул. Высокая вязкость материала может привести к значительному выпрямлению цепей и их ориентации в направлении приложения силы, что используется для получения ориентированных высокопрочных волокон и пленок.

Определение температур физических переходов в полимерах возможно с помощью термомеханического метода, при котором исследуется зависимость деформации от температуры при постоянных нагрузках. Этот же метод может использоваться для быстрого определения таких важных характеристик полимерных материалов, как температуры стеклования, кристаллизации, начала химического разложения.

При помощи термомеханического метода можно исследовать влияние различных веществ на отверждение полимеров: изучать влияние пластификаторов, наполнителей и других ингредиентов на технологические свойства полимерных материалов. Температуры физических переходов в полимерах могут быть определены также методом дифференциально-термического анализа.

Анализ структуры и физических переходов в термопластичных полимерах, используемых в качестве конструкционных полимерных материалов, позволяет разделить их на три основные группы.

Первая группа - аморфные или трудно кристаллизующиеся полимеры с жесткими макромолекулами, максимальная степень кристалличности которых не превышает 25% и Т с значительно превышает комнатную температуру. К этой группе относятся нерегулярно построенные карбоцепные полимеры: полистирол, полиметилметакрилат, поливинилхлорид, их статистические сополимеры с небольшим числом звеньев другого мономера и ароматические гетероцепные полимеры: простые полиэфиры (полифениленоксид, полисульфон), сложные полиэфиры (поликарбонаты, полиарилаты), полиамиды (фенилон). При комнатной температуре – это жесткие упругие материалы (полимерные стекла), верхний температурный предел эксплуатации которых ограничен Т с. Формование изделий осуществляется при температуре выше Т т (в случае литья или экструзии) или Т с (при штамповке и вытяжке).

Вторая группа кристаллизующиеся полимеры со средней степенью кристалличности, Т с которых довольно близка к комнатной температуре. К этой группе относятся полиметилпентен, политрифторхлорэтилен, пентапласт, алифатические полиамиды. Верхний температурный предел эксплуатации таких полимеров определяется степенью кристалличности и может колебаться от Т с аморфной фазы до температуры плавления (Т пл) кристаллической, а переработка в изделия производится выше Т пл.

Третья группа кристаллизующиеся полимеры с высокой степенью кристалличности, Т с аморфной фазы которых значительно ниже комнатной. К этой группе относятся полиэтилен, полипропилен, полибутен-1, политетрафторэтилен и полиформальдегид. В нормальных условиях в этих полимерах сочетаются свойства, присущие аморфной фазе, находящейся в эластическом состоянии, и жесткой кристаллической фазе. Поэтому в интервале Т с < Т < Т пл их поведение в решающей степени определяется степенью кристалличности. Верхний температурный предел эксплуатации обычно ограничивается Т пл. Ниже Т с аморфной фазы полимеры становятся жесткими и хрупкими полимерными стеклами. Формование изделий литьем или экструзией осуществляется выше Т пл, штамповкой – вблизи Т пл. Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.

По отношению к нагреву

Полимерные материалы изменяют свои свойства под воздействием температуры. По этому признаку различают термопластичные и термореактивные полимеры.

Термопластичные полимеры (термопласты) при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим, Структура макромолекул таких полимеров линейная и разветвленная.

Термореактивные полимеры (термореакты) на первой стадии образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным.

Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.


Вязкотекучее состояние используют в первую очередь для переработки полимеров методами экструзии, литья, пневмоформования и т.д. С молекулярно-кинетических позиций (см. подпараграф 4.2.2) в вязкотекучем состоянии в полимерах развивается необратимая деформация течения, обусловленная взаимными перемещениями макромолекулярных клубков. На практике кроме деформации течения в полимерных жидкостях или расплавах имеют место высокоэластические и упругие деформации, протекание которых в процессе переработки полимера приводит к понижению формоустойчивости конечных изделий и их потребительских свойств.

Для аморфных полимеров переход в вязкотекучее состояние наблюдается при температуре текучести Т т (см. подпараграф 4.2.3), величина которой зависит от молекулярной массы полимера (см. рис. 4.7). Для ряда полимеров при увеличении молекулярной массы температура текучести начинает превышать температуру термической деструкции материала, что делает невозможным его переработку. Типичным примером является полиметилметакрилат, для которого процессы деполимеризации проявляются уже при температурах около 200°С. В связи с этим методы экструзии и литья применимы только для полиметилметакрилата с достаточно низкой (не более 200 000) молекулярной массой, для которого Т т 200°С.

Физико-механическое поведение полимеров в вязкотекучем состоянии удовлетворительно описывает закон Ньютона (см. выражение (4.2)), в котором коэффициент пропорциональности г) (вязкость) характеризует сопротивление полимера внешнему силовому воздействию. В общем случае жидкие среды, подчиняющиеся закону Ньютона, называют ньютоновскими. Однако поведение расплавов реальных полимеров имеет более сложный характер.

Для полимера в вязкотекучем состоянии зависимость вязкости от напряжения приведена на рис. 4.23. В областях I (область наибольшей ныото-

Рис. 4.23

новской вязкости) и III (область наименьшей ньютоновской вязкости) течение полимера подчиняется закону Ньютона (см. уравнение (4.2)). В области II (область аномалии вязкости) вязкость в значительной степени зависит от напряжения, т.е. для описания вязкого течения в этом интервале напряжений закон Ньютона неприменим.

Наблюдаемая аномалия вязкости связана с комплексом структурных перестроек, вызванных приложенным напряжением. К подобным изменениям структуры относят в первую очередь разрушение флуктуационной сетки (см. подпараграф 4.21), стабилизированной межмолекулярными и межсегментальными физическими взаимодействиями. Иными словами, область наибольшей ньютоновской вязкости соответствует течению «структурированной» полимерной жидкости, а область наименьшей ньютоновской вязкости - течению полимерной жидкости с разрушенной флуктуационной структурой.

Зависимость вязкости от температуры описывается экспоненциальной зависимостью с учетом энергии активации вязкого течения Е а. По мере возрастания молекулярной массы М энергия активации вязкого течения возрастает. Однако при превышении критической величины молекулярной массы, сопоставимой с величиной сегмента, энергия активации достигает предельного значения и перестает зависеть от молекулярной массы. Это поведение свидетельствует о том, что в процессе течения взаимное перемещение макромолекулярных клубков или относительное смещение их центров масс осуществляется путем скоррелированных перемещений сегментов полимерных цепей.

Естественно, что активационные параметры элементарного акта течения, связанного с поступательным перемещением сегментов, не зависят от молекулярной массы макромолекулы. Однако от нее заметно зависит абсолютное значение вязкости. Для необратимого смещения центра масс мак- ромолекулярного клубка необходимо согласованное перемещение ряда сегментов. Чем больше длина цепи, тем большее число таких перемещений для этого требуется.

Теоретические расчеты и экспериментальные данные показывают, что общая зависимость вязкости от молекулярной массы разделяется на два участка. При низких величинах молекулярной массы r ~ М. По достижении некоторого критического значения молекулярная масса оказывает более сильное влияние на вязкость, иг|- М 3,5 . Одной из причин наблюдаемого поведения является то, что при увеличении длины макромолекул формируется сетка зацеплений (см. подпараграф 4.2.1) с образованием обобщенного клубка.

КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ ПОЛИМЕРОВ, фазовое состояние, характеризующееся существованием дальнего трёхмерного порядка в расположении атомов, звеньев и цепей макромолекул. Возможность перехода в кристаллическое состояние присуща стереорегулярно построенным макромолекулярным цепям со степенью гибкости, достаточной для конформационной перестройки цепи, приводящей к упорядоченному расположению. Необходимым условием перехода является также отсутствие в макромолекуле громоздких боковых заместителей или боковых ответвлений. Наличие полярных групп обычно способствует переходу в кристаллическое состояние за счёт усиления межмолекулярного притяжения. Кристаллическое состояние существует у таких промышленно важных полимеров, как полиэтилен, полипропилен, полиамиды, полиэтилентерефталат, политетрафторэтилен и др. Некоторые полимеры могут переходить в жидкокристаллическое состояние (смотри Жидкокристаллические полимеры).

Переход полимеров в кристаллическое состояние - кристаллизация - происходит при охлаждении расплавов полимеров или в процессе осаждения их из растворов, а также при одноосном растяжении эластомеров. Кристаллизация - фазовый переход первого рода с присущими каждому полимеру значениями температуры и теплоты перехода; эти характеристики определяют калориметрическими методами. Кристаллизация из расплавов осуществляется в широком диапазоне температур - от температуры стеклования до равновесной температуры плавления; зависимость скорости кристаллизации из расплава от температуры выражается кривой с максимумом.

При кристаллизации полимеров всегда сохраняются области с неупорядоченной (аморфной) структурой, поэтому для характеристики полимеров используют понятие степени кристалличности. Степень кристалличности показывает объёмное отношение неразделяемых аморфной и кристаллической фаз, зависит от природы полимера и строения его цепи, условий кристаллизации и внешних воздействий. Например, степень кристалличности возрастает при отжиге полимера или при одноосном растяжении. Степень кристалличности полимеров обычно 20-80% (менее 10% для поливинилхлорида, около 80% для полиэтилена). О степени кристалличности обычно судят по плотности полимера.

Простейшим элементом структуры полимера в кристаллическом состоянии является кристаллическая ячейка (размер до 5 нм). Методы рентгеноструктурного анализа позволяют определить параметры ячеек и конформации макромолекул, входящих в кристалл, для всех известных полимеров. Для кристаллического состояния полимеров характерна возможность полиморфизма, т. е. в зависимости от условий кристаллизации образуются элементарные ячейки различных типов.

Кристаллическое состояние полимеров отличается большой степенью дефектности кристаллов. Одна и та же макромолекулярная цепь может входить и в кристаллиты - высокоупорядоченные кристаллические области протяжённостью до 50 нм, и в аморфные области. В большинстве случаев полимерные цепи входят в кристаллиты в форме спирали, период идентичности может включать несколько витков.

В кристаллическом состоянии полимеров образуются различные надмолекулярные структуры. Наиболее распространены ламелярные и фибриллярные структуры. Ламели (пластины) характеризуются складчатой конформацией макромолекул, цепи полимера расположены перпендикулярно поверхности ламели, толщина ламелей достигает 25-100 мкм. Ламелярные кристаллы получаются обычно при медленной кристаллизации. Фибрилла - надмолекулярное образование с чередующимися кристаллическими и аморфными областями в виде нити или ленты длиной до 10 мкм и поперечным сечением примерно таким же, как размер кристаллитов. Макромолекулярные цепи ориентированы параллельно оси фибриллы. Фибриллярная форма кристаллов присуща ориентированному состоянию полимеров, характерна для вторичной структуры некоторых биополимеров.

Из ламелей и фибрилл построены более сложные надмолекулярные структуры полимеров, например монокристаллы и сферолиты. Монокристаллы образуются при осаждении из разбавленных растворов полимеров. Монокристаллы обычно построены из ламелей толщиной 10-20 нм. Самые крупные структурные образования полимеров в кристаллическом состоянии (размером до нескольких мм) - сферолиты - сферически симметричные образования, представляют собой типичные поликристаллы, обычно построенные из фибрилл. Вследствие радиальной симметрии сферолиты обладают анизотропией оптических свойств. Сферолиты обычно образуются при кристаллизации из высоковязких расплавов.

Некоторые биополимеры могут формировать глобулярные кристаллы, в которых узлы кристаллической решётки образованы отдельными макромолекулами в свёрнутых (глобулярных) конформациях.

Уровни упорядочения полимеров в кристаллическом состоянии изучают с использованием электронной микроскопии или методами структурного анализа, в частности мало и широкоуглового рассеяния (волн различной длины - от рентгеновского до оптического диапазона), позволяющими оценивать размеры структурных элементов различных типов. Для определения пространственного строения макромолекул в кристаллическом состоянии полимеров применяют методы ЯМР, механической и диэлектрической спектроскопии.

Степень кристалличности влияет на физические свойства полимеров (плотность, твёрдость, проницаемость и др.). Свойства полимера, находящегося в кристаллическом состоянии, определяются сочетанием свойств, присущих его кристаллической и аморфной фазам. Вследствие этого кристаллические полимерные материалы обладают высокой прочностью наряду со способностью к большим деформациям.

Лит.: Вундерлих Б. Физика макромолекул. М., 1976. Т. 1; Бартенев Г. М., Френкель С. Я. Физика полимеров. Л., 1990.

Полимеры могут существовать в двух фазовых состояниях — аморфном и кристаллическом .В свою очередь, аморфные полимеры могут существовать в трех физических состояниях — стеклообразном, высокоэластическом и вязкотекучем. С каждым из этих состояний связан определенный комплекс механических свойств. Полимеры переходят из одного физического состояния в другое при изменении температуры.

Переходы полимеров из одного состояния в другое удобно регистрировать с помощью термомеханического метода исследования, который основан на измерении зависимости деформации полимера (ε ) от температуры (Т) при действии на него постоянной нагрузки в течение определенного времени (термомеханическая кривая) (рис.11).

Термомеханическая кривая кристаллического полимера имеет вид кривой а (рис.11), для аморфного термопласта кривая имеет вид б. На ней четко наблюдается участок (плато) высокоэластичного состояния. Кривая в отражает свойства густосетчатого аморфного полимера, нелимитированное нагревание которого завершается термомеханической деструкцией (Т ТМД). При Т<Т Р все полимеры находятся в твердом состоянии, при Т>Т ПЛ термопласты становятся жидкими, вязкотекучими в интервале температур Т Р < Т < Т ПЛ (Т ТМД) полимерные материалы размягчены.

Как мы видим из рис. 11, для линейных аморфных полимеров термомеханическая кривая имеет более сложный характер (рис.12)

Между температурными областями стеклообразного (область Ι) и вязкотекучего (область ΙΙΙ) состояний появляется еще одна температурная область, в которой полимер находится в особом высокоэластическом состоянии. В этом состоянии в полимере под действием небольших усилий развиваются очень большие обратимые деформации, характеризующиеся малыми значениями модуля упругости (в 10 4 - 10 5 раз меньше, чем у обычных твердых тел).

Высокоэластическое состояние возможно только для веществ, построенных из длинных цепных молекул, а его возникновение связано с проявлением гибкости этих молекул.

Характер теплового движения макромолекул в различных температурных интервалах неодинаков. В температурной области стеклообразного состояния энергия теплового движения недостаточна для перемещения отдельных участков макромолекул относительно друг друга, поэтому форма макромолекул и их взаимное расположение практически не изменяются во времени. Соответственно при малых нагрузках в стеклообразном состоянии у полимеров наблюдаются лишь небольшие обратимые деформации.


По достижении температуры стеклования подвижность звеньев макромолекулы, весьма ограниченная в области стеклообразного состояния, значительно возрастает. Поэтому за время нагружения становится возможным перемещение отдельных участков цепей и изменение формы макромолекул. Внешняя сила придает этим изменениям направленный характер и вызывает тем самым значительные деформации образца.

При еще более высоких температурах за время нагружения успевает произойти не только изменение формы макромолекул и отдельных их частей, но и заметное перемещение макромолекул как целого (их центров тяжести) относительно друг друга под действием внешней силы. В результате происходит развитие необратимой деформации полимера, т.е. его течение. Температура, при которой наряду с обратимой высокоэластической становится значительной и необратимая деформация, называется температурой текучести.

На рис.13 показано семейство термомеханических кривых для образцов различных членов полимергомологического ряда. Из рисунка видно, что низкомолекулярные полимергомологи могут находиться только в двух состояниях: стеклообразном и вязкотекучем (иными словами, их Т С и Т Т совпадают).

С увеличением молекулярной массы (степени полимеризации) температура перехода расщепляется на Т С и Т Т , т.е. возникает высокоэластическое состояние, и соответственно на термомеханической кривой появляются три описанных выше участка. При дальнейшем увеличении молекулярной массы полимера Т С остается постоянной, а Т Т продолжает повышаться. Следовательно, интервал Т Т Т С , характеризующий протяженность температурной области высокоэластического состояния для данного полимера, тем больше, чем больше его молекулярная масса.

Прекращение повышения Т С в полимергомологическом ряду и возникновение высокоэластичности обусловлено гибкостью макромолекул. Действительно, подвижность отдельных участков (сегментов ) гибкой цепной молекулы не зависит от ее полной длины, если только последняя значительно больше длины этих участков.

Вследствие значительной гибкости молекулярных цепей их перемещение относительно друг друга как целого также происходит в результате теплового движения отдельных участков. Переход в вязкотекучее состояние как раз и связан с появлением таких перемещений за время наблюдения. Естественно, что чем длиннее макромолекула, тем больше требуется элементарных актов диффузии для перемещения ее центра тяжести на данное расстояние за некоторый произвольно выбранный промежуток времени, т.е. тем интенсивнее должно быть тепловое движение. Этим объясняется постоянное повышение Т Т по мере возрастания степени полимеризации полимера.

Рассмотренные термомеханические кривые (рис.3 и рис.4) отражают зависимость деформируемости линейных аморфных полимеров от температуры.

Сшитые аморфные полимеры при небольшом числе химических поперечных связей между макромолекулами характеризуются термомеханической кривой, приведенной на рис.14. Узлы сетки препятствуют относительному перемещению центров тяжести полимерных цепей. Поэтому вязкое течение не наблюдается даже при высоких температурах. Температурная область высокоэластичности расширяется, и ее верхней границей становится температура химического разложения полимера (Т РАЗЛ ).

Существенные изменения свойств кристаллических полимеров наблюдаются в области температуры плавления. При температуре плавления кристаллическая фаза полимера исчезает, деформируемость образца резко возрастает. Если степень полимеризации полимера сравнительно невысока, так что его Т Т оказывается ниже Т ПЛ , то при плавлении он сразу переходит в вязкотекучее состояние (рис.6, кривая 2). При достаточно высоких степенях полимеризации Т Т может оказаться выше Т ПЛ . Тогда между Т ПЛ и Т Т на термомеханической кривой появляется плато высокоэластичности (рис.15, кривая 1).

Температурные интервалы фазовых и физических состояний определяют комплекс механических свойств и соответственно области практического применения полимера. Так, полимеры, находящиеся при комнатной температуре в кристаллическом (фазовом) или аморфные полимеры в стеклообразном (физическом) состоянии могут быть использованы в качестве пластиков или волокнообразующих материалов. Аморфные полимеры, находящиеся при комнатной температуре в высокоэластическом физическом состоянии, могут применяться в качестве каучуков для получения резиновых изделий. В вязкотекучем состоянии обычно осуществляют переработку (формование) полимеров в изделия.

Неметаллические материалы

Строение и структура полимеров

Полимерами называются соединения, в которых более или менее регулярно чередуются большое число одинаковых или неодинаковых атомных группировок, соединенных химическими связями в линейные или разветвленные цепи, а также в пространственные сетки.

Многократно повторяющиеся группировки называются мономерными звеньями, а большая молекула, составленная из звеньев - макромолекулой или полимерной цепью. Число звеньев в цепи - степень полимеризации и обозначается буквой “n”. Название полимера складывается из названия мономера и приставки “поли”.

Полимеры, построенные из одинаковых мономеров, называются гомополимерами..

По сравнению с низкомолекулярными соединениями полимеры обладают рядом особенностей: они могут находиться только в конденсированном твердом или жидком состоянии; растворы полимеров имеют высокую вязкость; при удалении растворителя полимеры выделяются не в виде кристаллов, как низкомолекулярные соединения, а в виде пленок; полимеры можно переводить в ориентированное состояние; для многих полимеров характерны большие обратимые деформации и т.п.

Специфические свойства полимеров обусловлены особенностями их структуры, знание основных параметров которой необходимо для создания научно обоснованных методов их регулирования.

Типы макромолекул

Своеобразие свойств полимеров обусловлено структурой их макромолекул. По форме макромолекул полимеры делятся на линейные, разветвленные, лестнич- ные и сетчатые.

Линейные макромолекулы представляют собой длинные зигзагообразные или закрученные в спираль цепочки.

Разветвленные макромолекулы отличаются наличием боковых ответвлений.

Лестничные макромолекулы состоят из двух цепей, соединенных химическими связями.

Пространственные полимеры образуются при сшивке макромолекул между собой в поперечном направлении химическими связями.

Отличительной особенностью полимерных молекул является гибкость. Гибкость цепи - это способность ее изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое помещен полимер. Она характеризует способность полимеров кристаллизоваться, определяет температурный интервал плавления, упругие, эластические и другие свойства.

По структуре и отношению к температуре полимеры делятся на термопластичные и термореактивные.

Термопластичные - полимеры, у которых при нагревании не образуется поперечных химических связей и которые при определенной температуре размягчаются и переходят из твердого в пластичное состояние.

Термореактивные - полимеры, которые на первой стадии образования имеют линейную структуру, а затем вследствие протекания химических процессов образуют пространственные сетки, затвердевают и переходят в неплавкое и нерастворимое состояние.

Синтетические полимеры получают из низкомолекулярных веществ (мономеров) по реакциям полимеризации, поликонденсации, сополимеризации, а также путем химических превращений других природных и синтетических полимеров.

Полимеризация - процесс соединения нескольких мономеров, не сопровождающийся выделением побочных продуктов и протекающий без изменения элементарного состава. Полимеризацией получается такие полимеры как полиэтилен, полистирол, поливинилхлорид и др.

Поликонденсация - процесс соединения нескольких мономеров, сопровождающийся выделением простейших низкомолекулярных веществ (H 2 O, Hcl и т.д.). Поликонденсацией получаются фенолформальдегидные смолы.

Сополимеризация - полимеризация двух или большего числа мономеров различного строения. Сополимеризацией получаются сополимеры этилена с пропиленом.

Фазовые состояния полимеров

Полимеры могут находиться в двух фазовых состояниях: кристаллическом и аморфном (жидком).

В газообразном фазовом состоянии полимеры находится не могут, так как температура кипения значительно больше температуры разложения.

Кристаллическое фазовое состояние характеризуется наличием трехмерного дальнего порядка в расположении атомов и молекул. Дальний порядок - порядок, соблюдающийся на расстояниях, превышающих размеры молекул в сотни и тысячи раз.

Жидкое (аморфное) фазовое состояние характеризуется отсутствием кристаллической структуры. В аморфном состоянии наблюдается ближний порядок - порядок, который соблюдается на расстояниях, соизмеримых с размерами молекул. Вблизи данной молекулы ее соседи могут быть расположены в определенном порядке, а на небольшом расстоянии этот порядок отсутствует.

Загрузка...