inlaber.ru

Что является натуральным числом. Числа

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд , который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

    Единица- натуральное число, которое не следует ни за каким натуральным числом.

    За каждым натуральным числом следует одно и только одно число

    Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

    Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

    Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

    Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

    От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

    Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

    Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

    Если из числа вычесть нуль, то число не изменится

    Если из числа вычесть его само, то получится нуль

Свойства умножения

    Переместительное $a\cdot b=b\cdot a$

    Произведение двух чисел не изменяется при перестановке множителей

    Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

    При умножении на единицу произведение не изменяется $m\cdot 1=m$

    При умножении на нуль произведение равно нулю

    Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

    Распределительное свойство умножения относительно сложения

    $(a+b)\cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

    Распределительное свойство умножение относительно вычитания

    $(a-b)\cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

    Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

    Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение : На основании указанного свойства,т.к. по условию $a

    в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

    Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

    Все цифры, расположенные правее разряда, до которого округляют число,заменяют нулями

Натура́льные чи́сла (естественные числа) - числа , возникающие естественным образом при счёте. Последовательность всех натуральных чисел, расположенных в порядке их возрастания, называется натуральным рядом .

Существуют два подхода к определению натуральных чисел - это числа, возникающие при:

  • подсчёте (нумерации) предметов (первый , второй , третий , …);
  • обозначении количества предметов (нет предметов , один предмет , два предмета , …).

В первом случае ряд натуральных чисел начинается с единицы, во втором - с нуля. Не существует единого для большинства математиков мнения о предпочтительности первого или второго подхода (то есть считать ли ноль натуральным числом или нет). В подавляющем большинстве российских источников традиционно принят первый подход . Второй подход, например, применяется в трудах Бурбаки , где натуральные числа определяются как мощности конечных множеств . Кроме того, отсчёт с нуля широко распространён в программировании (например, для индексации массивов, нумерации битов машинного слова и т. д.).

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

  • 0=\varnothing
  • S(n)=n\cup\left\{n\right\}

Числа, заданные таким образом, называются ординальными .

Опишем несколько первых ординальных чисел и соответствующих им натуральных чисел:

  • 0=\varnothing
  • 1=\left\{0\right\}=\left\{\varnothing\right\}
  • 2=\left\{0,1\right\}=\big\{\varnothing,\;\left\{\varnothing\right\}\big\}
  • 3=\left\{0,1,2\right\}=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}

Ноль как натуральное число

Иногда, особенно в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют 1 на 0. В этом случае нуль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению. Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций нуль, как и пустое множество, не является чем-то обособленным. Другим преимуществом считать ноль натуральным числом является то, что при этом \N образует моноид .

В русской литературе обычно нуль исключён из числа натуральных чисел 0\notin\mathbb{N}, а множество натуральных чисел с нулём обозначается как \mathbb{N}_0. Если в определение натуральных чисел включен нуль, то множество натуральных чисел записывается как \mathbb{N}, а без нуля как \mathbb{N}^*.

В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество \{1,2,\dots\} обычно называют множеством положительных целых чисел и обозначают \Z_+. Множество \{0,1,\dots\} зачастую называют множеством неотрицательных целых чисел и обозначают \Z_{\geqslant 0}.

Операции над натуральными числами

|заголовок3= Инструменты расширения
числовых систем |заголовок4= Иерархия чисел |список4=
-1,\;0,\;1,\;\ldots Целые числа
-1,\;1,\;\frac{1}{2},\;\;0{,}12,\frac{2}{3},\;\ldots Рациональные числа
-1,\;1,\;\;0{,}12,\frac{1}{2},\;\pi,\;\sqrt{2},\;\ldots Вещественные числа
-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots Комплексные числа 1,\;i,\;j,\;k,\;2i + \pi j-\frac{1}{2}k,\;\dots Кватернионы 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2 - 5l + \frac{\pi}{3}m,\;\dots Октонионы 1,\;e_1,\;e_2,\;\dots,\;e_{15},\;7e_2 + \frac{2}{5}e_7 - \frac{1}{3}e_{15},\;\dots Седенионы
|заголовок5= Другие
числовые системы |заголовок6= См. также

Отрывок, характеризующий Натуральное число

После чая Николай, Соня и Наташа пошли в диванную, в свой любимый угол, в котором всегда начинались их самые задушевные разговоры.

– Бывает с тобой, – сказала Наташа брату, когда они уселись в диванной, – бывает с тобой, что тебе кажется, что ничего не будет – ничего; что всё, что хорошее, то было? И не то что скучно, а грустно?
– Еще как! – сказал он. – У меня бывало, что всё хорошо, все веселы, а мне придет в голову, что всё это уж надоело и что умирать всем надо. Я раз в полку не пошел на гулянье, а там играла музыка… и так мне вдруг скучно стало…
– Ах, я это знаю. Знаю, знаю, – подхватила Наташа. – Я еще маленькая была, так со мной это бывало. Помнишь, раз меня за сливы наказали и вы все танцовали, а я сидела в классной и рыдала, никогда не забуду: мне и грустно было и жалко было всех, и себя, и всех всех жалко. И, главное, я не виновата была, – сказала Наташа, – ты помнишь?
– Помню, – сказал Николай. – Я помню, что я к тебе пришел потом и мне хотелось тебя утешить и, знаешь, совестно было. Ужасно мы смешные были. У меня тогда была игрушка болванчик и я его тебе отдать хотел. Ты помнишь?
– А помнишь ты, – сказала Наташа с задумчивой улыбкой, как давно, давно, мы еще совсем маленькие были, дяденька нас позвал в кабинет, еще в старом доме, а темно было – мы это пришли и вдруг там стоит…
– Арап, – докончил Николай с радостной улыбкой, – как же не помнить? Я и теперь не знаю, что это был арап, или мы во сне видели, или нам рассказывали.
– Он серый был, помнишь, и белые зубы – стоит и смотрит на нас…
– Вы помните, Соня? – спросил Николай…
– Да, да я тоже помню что то, – робко отвечала Соня…
– Я ведь спрашивала про этого арапа у папа и у мама, – сказала Наташа. – Они говорят, что никакого арапа не было. А ведь вот ты помнишь!
– Как же, как теперь помню его зубы.
– Как это странно, точно во сне было. Я это люблю.
– А помнишь, как мы катали яйца в зале и вдруг две старухи, и стали по ковру вертеться. Это было, или нет? Помнишь, как хорошо было?
– Да. А помнишь, как папенька в синей шубе на крыльце выстрелил из ружья. – Они перебирали улыбаясь с наслаждением воспоминания, не грустного старческого, а поэтического юношеского воспоминания, те впечатления из самого дальнего прошедшего, где сновидение сливается с действительностью, и тихо смеялись, радуясь чему то.
Соня, как и всегда, отстала от них, хотя воспоминания их были общие.
Соня не помнила многого из того, что они вспоминали, а и то, что она помнила, не возбуждало в ней того поэтического чувства, которое они испытывали. Она только наслаждалась их радостью, стараясь подделаться под нее.
Она приняла участие только в том, когда они вспоминали первый приезд Сони. Соня рассказала, как она боялась Николая, потому что у него на курточке были снурки, и ей няня сказала, что и ее в снурки зашьют.
– А я помню: мне сказали, что ты под капустою родилась, – сказала Наташа, – и помню, что я тогда не смела не поверить, но знала, что это не правда, и так мне неловко было.
Во время этого разговора из задней двери диванной высунулась голова горничной. – Барышня, петуха принесли, – шопотом сказала девушка.
– Не надо, Поля, вели отнести, – сказала Наташа.
В середине разговоров, шедших в диванной, Диммлер вошел в комнату и подошел к арфе, стоявшей в углу. Он снял сукно, и арфа издала фальшивый звук.
– Эдуард Карлыч, сыграйте пожалуста мой любимый Nocturiene мосье Фильда, – сказал голос старой графини из гостиной.
Диммлер взял аккорд и, обратясь к Наташе, Николаю и Соне, сказал: – Молодежь, как смирно сидит!
– Да мы философствуем, – сказала Наташа, на минуту оглянувшись, и продолжала разговор. Разговор шел теперь о сновидениях.
Диммлер начал играть. Наташа неслышно, на цыпочках, подошла к столу, взяла свечу, вынесла ее и, вернувшись, тихо села на свое место. В комнате, особенно на диване, на котором они сидели, было темно, но в большие окна падал на пол серебряный свет полного месяца.
– Знаешь, я думаю, – сказала Наташа шопотом, придвигаясь к Николаю и Соне, когда уже Диммлер кончил и всё сидел, слабо перебирая струны, видимо в нерешительности оставить, или начать что нибудь новое, – что когда так вспоминаешь, вспоминаешь, всё вспоминаешь, до того довоспоминаешься, что помнишь то, что было еще прежде, чем я была на свете…
– Это метампсикова, – сказала Соня, которая всегда хорошо училась и все помнила. – Египтяне верили, что наши души были в животных и опять пойдут в животных.
– Нет, знаешь, я не верю этому, чтобы мы были в животных, – сказала Наташа тем же шопотом, хотя музыка и кончилась, – а я знаю наверное, что мы были ангелами там где то и здесь были, и от этого всё помним…
– Можно мне присоединиться к вам? – сказал тихо подошедший Диммлер и подсел к ним.
– Ежели бы мы были ангелами, так за что же мы попали ниже? – сказал Николай. – Нет, это не может быть!
– Не ниже, кто тебе сказал, что ниже?… Почему я знаю, чем я была прежде, – с убеждением возразила Наташа. – Ведь душа бессмертна… стало быть, ежели я буду жить всегда, так я и прежде жила, целую вечность жила.
– Да, но трудно нам представить вечность, – сказал Диммлер, который подошел к молодым людям с кроткой презрительной улыбкой, но теперь говорил так же тихо и серьезно, как и они.
– Отчего же трудно представить вечность? – сказала Наташа. – Нынче будет, завтра будет, всегда будет и вчера было и третьего дня было…
– Наташа! теперь твой черед. Спой мне что нибудь, – послышался голос графини. – Что вы уселись, точно заговорщики.
– Мама! мне так не хочется, – сказала Наташа, но вместе с тем встала.
Всем им, даже и немолодому Диммлеру, не хотелось прерывать разговор и уходить из уголка диванного, но Наташа встала, и Николай сел за клавикорды. Как всегда, став на средину залы и выбрав выгоднейшее место для резонанса, Наташа начала петь любимую пьесу своей матери.
Она сказала, что ей не хотелось петь, но она давно прежде, и долго после не пела так, как она пела в этот вечер. Граф Илья Андреич из кабинета, где он беседовал с Митинькой, слышал ее пенье, и как ученик, торопящийся итти играть, доканчивая урок, путался в словах, отдавая приказания управляющему и наконец замолчал, и Митинька, тоже слушая, молча с улыбкой, стоял перед графом. Николай не спускал глаз с сестры, и вместе с нею переводил дыхание. Соня, слушая, думала о том, какая громадная разница была между ей и ее другом и как невозможно было ей хоть на сколько нибудь быть столь обворожительной, как ее кузина. Старая графиня сидела с счастливо грустной улыбкой и слезами на глазах, изредка покачивая головой. Она думала и о Наташе, и о своей молодости, и о том, как что то неестественное и страшное есть в этом предстоящем браке Наташи с князем Андреем.
Диммлер, подсев к графине и закрыв глаза, слушал.
– Нет, графиня, – сказал он наконец, – это талант европейский, ей учиться нечего, этой мягкости, нежности, силы…
– Ах! как я боюсь за нее, как я боюсь, – сказала графиня, не помня, с кем она говорит. Ее материнское чутье говорило ей, что чего то слишком много в Наташе, и что от этого она не будет счастлива. Наташа не кончила еще петь, как в комнату вбежал восторженный четырнадцатилетний Петя с известием, что пришли ряженые.
Наташа вдруг остановилась.
– Дурак! – закричала она на брата, подбежала к стулу, упала на него и зарыдала так, что долго потом не могла остановиться.
– Ничего, маменька, право ничего, так: Петя испугал меня, – говорила она, стараясь улыбаться, но слезы всё текли и всхлипывания сдавливали горло.
Наряженные дворовые, медведи, турки, трактирщики, барыни, страшные и смешные, принеся с собою холод и веселье, сначала робко жались в передней; потом, прячась один за другого, вытеснялись в залу; и сначала застенчиво, а потом всё веселее и дружнее начались песни, пляски, хоровые и святочные игры. Графиня, узнав лица и посмеявшись на наряженных, ушла в гостиную. Граф Илья Андреич с сияющей улыбкой сидел в зале, одобряя играющих. Молодежь исчезла куда то.
Через полчаса в зале между другими ряжеными появилась еще старая барыня в фижмах – это был Николай. Турчанка был Петя. Паяс – это был Диммлер, гусар – Наташа и черкес – Соня, с нарисованными пробочными усами и бровями.
После снисходительного удивления, неузнавания и похвал со стороны не наряженных, молодые люди нашли, что костюмы так хороши, что надо было их показать еще кому нибудь.
Николай, которому хотелось по отличной дороге прокатить всех на своей тройке, предложил, взяв с собой из дворовых человек десять наряженных, ехать к дядюшке.
– Нет, ну что вы его, старика, расстроите! – сказала графиня, – да и негде повернуться у него. Уж ехать, так к Мелюковым.
Мелюкова была вдова с детьми разнообразного возраста, также с гувернантками и гувернерами, жившая в четырех верстах от Ростовых.

Математика выделилась из общей философии примерно в шестом веке до н. э., и с этого момента началось ее победное шествие по миру. Каждый этап развития вносил что-то новое - элементарный счет эволюционировал, преображался в дифференциальное и интегральное исчисление, сменялись века, формулы становились все запутаннее, и настал тот момент, когда «началась самая сложная математика - из нее исчезли все числа». Но что же лежало в основе?

Начало начал

Натуральные числа появились наравне с первыми математическими операциями. Раз корешок, два корешок, три корешок… Появились они благодаря индийским ученым, которые вывели первую позиционную

Слово «позиционность» означает, что расположение каждой цифры в числе строго определено и соответствует своему разряду. Например, числа 784 и 487 - цифры одни и те же, но числа не являются равносильными, так как первое включает в себя 7 сотен, тогда как второе - только 4. Нововведение индийцев подхватили арабы, которые довели числа до того вида, который мы знаем сейчас.

В древности числам придавалось мистическое значение, Пифагор полагал, что число лежит в основе сотворения мира наравне с основными стихиями - огнем, водой, землей, воздухом. Если рассматривать все лишь с математической стороны, то что такое натуральное число? Поле натуральных чисел обозначается как N и представляет собой бесконечный ряд из чисел, которые являются целыми и положительными: 1, 2, 3, … + ∞. Ноль исключается. Используется в основном для подсчета предметов и указания порядка.

Что такое в математике? Аксиомы Пеано

Поле N является базовым, на которое опирается элементарная математика. С течением времени выделяли поля целых, рациональных,

Работы итальянского математика Джузеппе Пеано сделали возможной дальнейшую структуризацию арифметики, добились ее формальности и подготовили почву для дальнейших выводов, которые выходили за рамки области поля N.

Что такое натуральное число, было выяснено ранее простым языком, ниже будет рассмотрено математическое определение на базе аксиом Пеано.

  • Единица считается натуральным числом.
  • Число, которое идет за натуральным числом, является натуральным.
  • Перед единицей нет никакого натурального числа.
  • Если число b следует как за числом c, так и за числом d, то c=d.
  • Аксиома индукции, которая в свою очередь показывает, что такое натуральное число: если некоторое утверждение, которое зависит от параметра, верно для числа 1, то положим, что оно работает и для числа n из поля натуральных чисел N. Тогда утверждение верно и для n=1 из поля натуральных чисел N.

Основные операции для поля натуральных чисел

Так как поле N стало первым для математических расчетов, то именно к нему относятся как области определения, так и области значений ряда операций ниже. Они бывают замкнутыми и нет. Основным различием является то, что замкнутые операции гарантированно оставляют результат в рамках множества N вне зависимости от того, какие числа задействованы. Достаточно того, что они натуральные. Исход остальных численных взаимодействий уже не столь однозначен и напрямую зависит от того, что за числа участвуют в выражении, так как он может противоречить основному определению. Итак, замкнутые операции:

  • сложение - x + y = z, где x, y, z включены в поле N;
  • умножение - x * y = z, где x, y, z включены в поле N;
  • возведение в степень - x y , где x, y включены в поле N.

Остальные операции, итог которых может не существовать в контексте определения "что такое натуральное число", следующие:


Свойства чисел, принадлежащих полю N

Все дальнейшие математические рассуждения будут основываться на следующих свойствах, самых тривиальных, но от этого не менее важных.

  • Переместительное свойство сложения - x + y = y + x, где числа x, y включены в поле N. Или всем известное "от перемены мест слагаемых сумма не меняется".
  • Переместительное свойство умножения - x * y = y * x, где числа x, y включены в поле N.
  • Сочетательное свойство сложения - (x + y) + z = x + (y + z), где x, y, z включены в поле N.
  • Сочетательное свойство умножения - (x * y) * z = x * (y * z), где числа x, y, z включены в поле N.
  • распределительное свойство - x (y + z) = x * y + x * z, где числа x, y, z включены в поле N.

Таблица Пифагора

Одним из первых шагов в познании школьниками всей структуры элементарной математики после того, как они уяснили для себя, какие числа называются натуральными, является таблица Пифагора. Ее можно рассматривать не только с точки зрения науки, но и как ценнейший научный памятник.

Данная таблица умножения претерпела с течением времени ряд изменений: из нее убрали ноль, а числа от 1 до 10 обозначают сами себя, без учета порядков (сотни, тысячи...). Она представляет собой таблицу, в которой заглавия строк и столбцов - числа, а содержимое ячеек их пересечения равно их же произведению.

В практике обучения последних десятилетий наблюдалась необходимость заучивания таблицы Пифагора "по порядку", то есть сначала шло зазубривание. Умножение на 1 исключалось, так как результат был равен 1 или большему множителю. Между тем в таблице невооруженным взглядом можно заметить закономерность: произведение чисел растет на один шаг, который равен заглавию строки. Таким образом, второй множитель показывает нам, сколько раз нужно взять первый, дабы получить искомое произведение. Данная система не в пример удобнее той, что практиковалась в средние века: даже понимая, что такое натуральное число и насколько оно тривиально, люди умудрялись осложнять себе повседневный счет, пользуясь системой, которая базировалась на степенях двойки.

Подмножество как колыбель математики

На данный момент поле натуральных чисел N рассматривается лишь как одно из подмножеств комплексных чисел, но это не делает их менее ценными в науке. Натуральное число - первое, что познает ребенок, изучая себя и окружающий мир. Раз пальчик, два пальчик... Благодаря ему у человека формируется логическое мышление, а также умение определять причину и выводить следствие, подготавливая почву для больших открытий.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Загрузка...